BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//prima-2022//speaker calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZOME
TZID:America/Vancouver
TZURL:http://tzurl.org/zoneinfo-outlook/America/Vancouver
X-LIC-LOCATION:America/Vancouver
BEGIN:DAYLIGHT
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
TZNAME:PDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
TZNAME:PST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP;TZID=America/Vancouver:20221210T094500
DTSTART;TZID=America/Vancouver:20221210T094500
DTEND;TZID=America/Vancouver:20221210T100500
UID:20221210T094500@prima2022.primamath.org
SUMMARY:Complex Geometry and Optimal Transport
DESCRIPTION: Optimal transport studies the most economical movement of resources. In other words, one considers a pile of raw material and wants to transport it to a final configuration in a cost-efficient way. Under quite general assumptions, the solution to this problem will be induced by a transport map where the mass at each point in the initial distribution is sent to a unique point in the target distribution. In this talk, we will discuss the regularity of this transport map (i.e., whether nearby points in the first pile are sent to nearby points in the second pile). $$ $$
It turns out there are both local and global obstructions to establishing smoothness for the transport. When the cost is induced by a convex potential, we show that the local obstruction corresponds to the curvature of an associated Kähler manifold and discuss the geometry of this curvature tensor. In particular, we show (somewhat surprisingly) that its negativity is preserved along Kähler-Ricci flow.
STATUS:CONFIRMED
LOCATION:Online
END:VEVENT
END:VCALENDAR