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Generative Adversarial Nets (GAN)

Ø Groundbreaking work by Ian Goodfellow et al (2014)

Ø It tried to address the following question: Given a set 
of data (say, a set of human faces or Van Gogh 
paintings, can we generate data that are “similar”?

Ø The authors have proposed GAN, which uses two 
neural networks “competing against” each other to 
obtain desired outcome

Ø Yann LeCun has called “this (GAN) and the variations 
that are now best interesting idea in the last 10 years 
in ML, in my opinion.”



Input Output

An example: Image inpainting / 
colorization

It is almost impossible if we restrict ourselves to one single image.

“A lack of information 
cannot be remedied 
by any mathematical 
trickery.”
Lanczos, Cornelius.
1964. Linear 
Differential Operators.



AI Art at Christie’s Sells for $432,500

Please pay attention to the signature:

Edmond de Belamy, sold on Oct 25, 2018



Mathematical Art at HKUST



Leveraging Big Data



ØGiven a training set X, e.g. X =  set of dog images, we shall assume X contain samples 
drawn from an unknown distribution 𝑝! 𝑥

ØWe would like to learn 𝑝!(𝑥) from samples in X. But how?
ØStarting off with random noise 𝑧	~	𝑁(0, 𝐼), we try to find a function 𝐺 so that the 

distribution 𝑞"  of 𝐺(𝑧) approximates the distribution 𝑝!
ØOnce we find 𝐺, from any random sample 𝑧	~	𝑁 0,1  we obtain a generated sample 
𝐺(𝑧) that should look like something from X

GAN: Basic Ideas

The vanilla GAN by Goodfellow et al achieves this via:

§ Approximate 𝐺 using a neural network
§ Introducing another neural network 𝐷 to “compete against” 𝐺 so that 𝐺 will continue to improve
§ The “competition” between 𝐺 and 𝐷 is in the form of a minimax optimization of a loss function



Vanilla GAN

min
!

max
"

𝑉 𝐷, 𝐺
= min

!
max
"

𝐸#~%! log(𝐷 𝑥 ) + 𝐸&~'(),+)[log(1 − 𝐷 𝐺 𝑤 ]

Generative Adversarial Networks. Source: Google Images



1. Given the generator 𝐺, optimize the discriminator 𝐷:

max
"

𝐸#~%! log(𝐷 𝑥 ) + 𝐸&~'(),+)[log(1 − 𝐷 𝐺 𝑧 ]

2. Given the discriminator 𝐷, optimize the generator 𝐺	:

min
-
𝐸#~%! log(𝐷 𝑥 ) + 𝐸&~'(),+)[log(1 − 𝐷 𝐺 𝑧 ]

 min
-
𝐸&~'(),+)[log(1 − 𝐷 𝐺 𝑧 ]

Training the Vanilla GAN

Algorithm: Alternating the following two steps

• Log-D trick: replaces Step 2 by

min
"
𝐸#~%(',))[−log𝐷 𝐺 𝑧 ]



Mathematics of GAN: Minimizing Divergence

We are essentially trying to find a function 𝐺 so that the distribution 𝑞"  of 𝐺(𝑧) is close to 
the unknown target distribution 𝑝!, where 𝑧~𝑁(0, 𝐼).

There are two important questions here:
• What do we mean by two distributions 𝑝! and 𝑞"  being close to each other?
• We have no explicit expression of 𝑝!, how do we quantify how close is 𝑞"  to 𝑝!?

Divergence: A metric for probability distributions

Let 𝑝(𝑥) and 𝑞(𝑥) be two probability distributions (for simplicity they are density functions)

• Kullback-Leibler Divergence:

• Jensen-Shannon Divergence: 

There are other divergences



Mathematics of GAN: Minimizing Divergence

It is proved that for vanilla GAN
  min

!
max
"

𝐸#~%! log(𝐷 𝑥 ) + 𝐸-~'(),+)[log(1 − 𝐷 𝐺 𝑧 ]

is equivalent to  

The beauty of the vanilla GAN objective is that it has converted the minimization of JS-divergence 
into a minimax involving expectations.

Ø Minimizing JS-divergence (or KL-divergence) directly without knowing  𝑝! and 𝐺 explicitly is 
highly nontrivial

Ø The expectations, however, can be estimated by (mini-batch) sample averages. E.g. given 𝐷(x)

𝐸"~$! log(𝐷 𝑥 )  ≈ %
&

 ∑'(%) log(𝐷(𝑥'))	

      where 𝑥'  are samples drawn in the training dataset X



𝑓-Divergence

While vanilla GAN minimizes the Jensen-Shannon divergence, there are many other 
divergences one can use for GANs. A more general framework is 𝑓-divergence.

Let 𝑓(𝑡) be any strictly convex function with 𝑓 1 = 0. The 𝑓-divergence between 
two probability distributions 𝑝 and 𝑞 is

• Why is it a divergence? It follows from Jensen’s Inequality



f-GAN: Minimizing f-Divergence

GANs can be trained by minimizing 𝑓-divergence (𝑓-GAN)

Like for the Jensen-Shannon divergence for vanilla GAN, there is an equivalent 
dual version of this minimization

 min
!
max
.
	𝐸#~%! 𝑓(𝑇 𝑥 ) − 𝐸-~'(),+)[𝑓∗ 𝑇(𝐺 𝑧 ) ]

where 𝑓∗ is the convex dual (Fenchel dual) of 𝑓.

Ø With the dual version, expectations can now be estimated by (mini-batch) sample averages.	

Ø Both 𝐺(𝑥) and 𝑇(𝑥) will be modeled by neural networks, thus we write 𝐺(𝑥) and 𝑇(𝑥) as 
𝐺*(𝑥) and 𝑇+(𝑥), where	𝜃 and	𝜔 are neural network parameters.

Ø The parameters are optimized by SGD.



f-GAN: Minimizing f-Divergence

Ø The dual model solves the minimax optimization problem

 min
0
max
1

	𝐸#~%! 𝑓(𝑇1 𝑥 ) − 𝐸-~'(),+)[𝑓∗ 𝑇1(𝐺0 𝑧 ) ]	

Ø Actually we often encounter the same problems (i.e. vanishing gradient, mode 
collapse, etc) in training for 𝑓-GAN as we do with vanilla GAN.

Ø So is there a better way to train GAN so it is more stable?

Ø Turns out there is a way to directly solve the primal minimization problem

     where 𝑞0 is the distribution of 𝐺0 𝑧 , with 𝑧~𝑁(0, 𝐼). 

Ø Our Variational Gradient Flow (Vgrow) method does just that, and it proves to offer 
a much more stable method for training GAN.



GAN and f-divergence (2018)



Primal Minimization --Variational Gradient 
Flow (VGrow)

Goal:        Directly solve 

Idea:         Use variational gradient wrt 𝑞0, where recall that 𝑞0 is the distribution of  
    𝐺0 𝑧 , with 𝑧~𝑁(0, 𝐼). 

Step 1. Update  𝐺0. 𝑧  via functional gradient  𝐺2 = 𝐺0. + 𝑠 E ℎ2, where 𝑠 > 0   and  

Step 2.  Update 𝜃 of the generator 𝐺0 via

    where 𝑧3~𝑁(0, 𝐼). 
Density ratio estimator



AI Art (2019)

Training data: 11,170 portrait paintings at 256×256 resolution



Mode Collapse in Training GAN



Ground truth Vanilla GAN

Demo of mode collapse



Deep Generative Learning via
Schrödinger Bridge (2021)



• A large number of independent particles in ℝ# are 
observed.

• 𝑡 = 0, 𝜇(𝐱) = 𝑞(𝐱)d𝐱; 𝑡 = 1, 𝜐(𝐱) = 𝑝(𝐱)d𝐱.
• SBP aims to find the one  which is closest to the 

Brownian motion.
• (Dai Pra, 1991):

𝐮$∗ 𝐱 ∈ argmin𝐮∈𝒰𝔼 7
)

*
1
2
𝐮$ + d𝑡 ,

s. t. 	> d𝐱$ = 𝐮$d𝑡 + 𝜏d𝐰$ ,
	 𝐱)~𝑞 𝐱 , 𝐱*~𝑝 𝐱 .

• 𝒰 is the set of controls with finite energy, that 
satisfying the above condition.

Schrödinger Bridge Problem (SBP)

https://vdeborto.github.io/publication/schrodinger_bridge/
Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling，NeurIPS 2021

Valentin De Bortoli, James Thornton, Jeremy Heng, Arnaud Doucet



Deep Generative Learning via
Schrödinger Bridge

Stage 1 Stage 2

𝑞! 𝐱 𝑝"#$# 𝐱𝛿𝟎 𝐱

As the underlying distribution is difficult to learn, we first smooth it with  
𝑞+ 𝐱 , 𝑞+ 𝐱 = ∫𝑝,-.- 𝐲 Φ+ 𝐱 − 𝐲 d𝐲 is a smoothed distribution of 
𝑝,-.- 𝐱 , where Φ+ 𝐱 is the density of 𝒩(𝟎, 𝜎/𝐈)



• Stage 1: d𝐱2 = 𝜏𝛻𝐱	log𝔼𝐳~𝚽 0
𝑓 𝐱2 + 1 − 𝑡𝐳 d𝑡 + 𝜏d𝐰2, 𝑡 ∈ [0, 1]. 

Let 𝐱7~𝛿𝟎 𝐱 , then 𝐱9~𝑞: 𝐱 . (𝑓 𝐱 = ;1 𝐱
𝚽 0 𝐱

).

• Stage 2: d𝐱2 = 𝜎<𝛻𝐱	log	𝑞 (9=2)	: 𝐱2 d𝑡 + 𝜎d𝐰2, 𝑡 ∈ [0, 1]. Let 𝐱7~𝑞: 𝐱 , 
then 𝐱9~𝑝>?@? 𝐱 .

• With the two estimators <𝑓 𝐱 ≈ log ;1 𝐱
A 0 𝐱

and >𝐬 𝐱; A𝜎 ≈ 𝛻𝐱	log	𝑞B: 𝐱 , A𝜎 ∈
[0, 𝜎], we can use the Euler-Maruyama method to solve the SDEs. 

Sampling algorithm

Stage 1 Stage 2

d𝐱! = 𝜏𝛻𝐱	log𝔼𝐳~% !
𝑓 𝐱! + 1 − 𝑡𝐳 d𝑡 + 𝜏d𝐰! d𝐱! = 𝜎&𝛻𝐱	log	𝑞 '(!) 𝐱! d𝑡 + 𝜎d𝐰!



Theoretical results: we proved that

• Drift terms can be estimated consistently.

Theoretical results

Estimated drift terms of stage 1 and stage 2 in 2D example.



• Theorem (Consistency of the density ratio estimator) 
Assume that the support of  𝑝!"#" 𝐱 is contained in a compact set, and 
density ratio 𝑓 𝐱 = $! 𝐱

& " 𝐱
is Lipschitz continuous and bounded. Set the 

depth 𝒟, width 𝒲 and size 𝒮 of 𝒩𝒩' as

𝒟 = 𝑂 log 𝑛 ,𝒲 = 𝑂 𝑛
(

)()+()	log 𝑛 -. , 𝒮 = 𝑂 𝑛
(-)
(+)	log 𝑛 -/ .

Then 𝔼 2𝑓 𝐱 − 𝑓 𝐱 0#(1$%&%)
→ 0 as 𝑛 → ∞, where 𝑑 is the 

dimensionality of data, 𝑛 is the number of sample used to train the 
estimator.

Theoretical results



• Theorem (Consistency of the score estimator) 
Assume that the support of  𝑝DEFE 𝐱 is differentiable with bounded 
support, and 𝛻𝐱	log	𝑞GH 𝐱 is Lipschitz continuous and bounded for 
)𝜎, 𝐱 ∈ 0, 𝜎 ×ℝI. Set the depth 𝒟, width 𝒲 and size 𝒮 of 𝒩𝒩J as

𝒟 = 𝑂 log 𝑛 ,𝒲 = 𝑂 max 𝑛
I

K(KLI)	log 𝑛 MN, 𝑑 ,

𝒮 = 𝑂 𝑑𝑛
IMK
ILK	log 𝑛 MO .

Then 𝔼 =𝐬J 𝐱; )𝜎 − 𝛻𝐱	log	𝑞GH 𝐱 K P4(Q56)
→ 0 as 𝑛 → ∞, where 

𝑑 is the dimensionality of data, 𝑛 is the number of sample used to 
train the estimator.

Technical theoretical results



Theoretical results: we proved that

• (Consistency of proposed algorithm, informal) Under some mild 
smoothness assumptions of the target distribution, 
𝔼 𝒲) Law 𝐱23#43# , 𝑝!"#" → 0, 

as the number of samples for training and estimating drift terms, width, 
depth and size of neural networks and discretization steps of the Euler-
Maruyama method go to ∞.

Theoretical results



• Theorem (Consistency result of our method) 
Let 𝐷*(𝑡, 𝐱) = 𝛻𝐱	log𝔼𝐳~𝚽 ,

𝑓 𝐱 + 1 − 𝑡𝐳 , 𝐷+(𝑡, 𝐱) = 𝛻𝐱	log	𝑞 (*1$)	4 𝐱 . 

Denote ℎ4,6 𝐱*, 𝐱+ = exp 𝐱- .

+6
𝑝7898 𝐱* + 𝜎𝐱+ .

Under the following assumptions:
1. supp(𝑝7898) is contained in a ball with radius 𝑅, and 𝑝7898 > 𝑐 > 0 on its support;
2. 𝐷:(𝑡, 𝐱) + ≤ 𝐶*(1 + 𝐱 +), ∀𝐱 ∈ supp(𝑝7898), 𝑡 ∈ [0,1], where 𝐶* is a constant, 𝑖 = 1, 2;
3. 𝐷: 𝑡*, 𝐱* − 𝐷: 𝑡+, 𝐱+ + ≤ 𝐶+( 𝐱* − 𝐱+ + 𝑡* − 𝑡+ */+), ∀𝐱*, 𝐱+ ∈ supp(𝑝7898), 𝑡*, 𝑡+ ∈[0,1], where 𝐶+ is another constant;
4. ℎ4,6 𝐱*, 𝐱+ , 𝛻𝐱- 	ℎ4,6 𝐱*, 𝐱+ , 𝑝7898 and 𝛻𝑝7898 are 𝐿-Lipschitz functions;
𝔼 𝒲+ Law 𝐱<=9>=9 , 𝑝7898 → 0, as 𝑛,𝑁*, 𝑁+, 𝑁? → ∞, where 𝑛 is the number of samples used 
to train the estimators, 𝑁* and 𝑁+ are number of discretization steps in the Euler-Maruyama 
method of two stages, 𝑁? is the sample size for estimating the expectation in the drift term in 
stage 1.

Technical theoretical results



Experimental results (CIFAR-10)

Oscillation in GANs
Source: https://theaisummer.com/gan-computer-vision/

Our sampling procedure



Experimental results (CIFAR-10, CelebA)

FID and Inception Score on CIFAR-10. 
FID: lower is better;
IS: higher is better

Some recent diffusion models have achieved 
comparable  or even better performance.



Stage 2

𝑞) 𝐱 𝑝*+,+ 𝐱𝑝*+,+ 𝐱

Experimental results (Image interpolation)



Experimental results (Image inpainting)



Thank you!



Understanding of GAN

min
G

D(q(z)||p(x))



• Consider a batch of particles with distribution
• Update these particles by a small amount (preserve continuity),

such that the distribution of , denoted as , is closer to ,
the distribution of

Variational Gradient Flow (VGrow)

{zi}, i = 1, . . . , n

{zi}

{xi}

q(z)

p(x)q̃(z){T (zi)}

T (z) = z + s · h(z)

Df (q̃(z)||p(x))  Df (q(z)||p(x))

h(x) = �f 00(r(x))rr(x)



• Alternating the following two steps:

1. Given the generator G, optimize the discriminator D:

max
5

𝐸6~8'(6) log𝐷 𝑥 + 𝐸9~:(;,=)[log(1 − 𝐷 𝐺 𝑤 ]

2. Given the discriminator D, optimize the generator G:

min
!
𝐸"~$!(") log𝐷 𝑥 + 𝐸'~((),+)[log(1 − 𝐷 𝐺 𝑤 ]

= min
!
𝐸'~((),+)[log(1 − 𝐷 𝐺 𝑤 ]

• Log-D trick:
m𝑖𝑛
>
𝐸9~:(;,=)[−log𝐷 𝐺 𝑤 ]

Training GAN (Log-D trick)



Mathematics of GAN: Minimizing Divergence

It is proved that for vanilla GAN
 
 min

&
max
'

𝐸(~*@ log(𝐷 𝑥 ) + 𝐸+~,(.,0)[log(1 − 𝐷 𝐺 𝑤 ]

is equivalent to  

ØWHY does the log-D trick works?


