BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//prima-2022//speaker calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZOME
TZID:America/Vancouver
TZURL:http://tzurl.org/zoneinfo-outlook/America/Vancouver
X-LIC-LOCATION:America/Vancouver
BEGIN:DAYLIGHT
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
TZNAME:PDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
TZNAME:PST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP;TZID=America/Vancouver:20221206T113000
DTSTART;TZID=America/Vancouver:20221206T113000
DTEND;TZID=America/Vancouver:20221206T115000
UID:20221206T113000@prima2022.primamath.org
SUMMARY:Game of Cops and Robber on geodesic spaces
DESCRIPTION:The game of Cops and Robber is traditionally played on a finite graph. But one can define the game that is played on an arbitrary geodesic space (a compact, path-connected space endowed with intrinsic metric). It is shown that the game played on metric graphs is essentially the same as the discrete game played on abstract graphs and that for every compact geodesic surface there is an integer $c$ such that $c$ cops can win the game against one robber, and $c$ only depends on the genus $g$ of the surface. It is shown that $c=3$ for orientable surfaces of genus $0$ or $1$ and nonorientable surfaces of crosscap number $1$ or $2$ (with any number of boundary components) and that $c=O(g)$ and that $c=\Omega(\sqrt{g})$ when the genus $g$ is larger.
The main motivation for discussing this game is to view the cop number (the minimum number of cops needed to catch the robber) as a new geometric invariant describing how complex is the geodesic space.
STATUS:CONFIRMED
LOCATION:Junior Ballroom C
END:VEVENT
END:VCALENDAR