BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//prima-2022//speaker calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZOME
TZID:America/Vancouver
TZURL:http://tzurl.org/zoneinfo-outlook/America/Vancouver
X-LIC-LOCATION:America/Vancouver
BEGIN:DAYLIGHT
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
TZNAME:PDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
TZNAME:PST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP;TZID=America/Vancouver:20221206T120000
DTSTART;TZID=America/Vancouver:20221206T120000
DTEND;TZID=America/Vancouver:20221206T122000
UID:20221206T120000@prima2022.primamath.org
SUMMARY:Graphs with $r$-friendship property
DESCRIPTION:For $r\geq 1$, a graph has $r$-friendship property if every pair of vertices has exactly $r$ common neighbours. The motivation for this definition is from the Friendship theorem, which is on the graphs with $1$-friendship property. The Friendship theorem, first proved by Erdős, Rényi, and Sós in 1966, states that if $G$ is a graph in which every pair of vertices has exactly one common neighbour, then $G$ has a universal vertex $v$ adjacent to all others, and the graph induced by $V(G)\setminus \{v \}$ is a matching. In this presentation, we study graphs with $r$-friendship property, where $r\geq 2$. We show all such graphs are strongly regular. Furthermore, we prove that for any $r\geq 2$, there are only finitely many graphs with $r$-friendship property. This is an ongoing joint work with Karen Gunderson.
STATUS:CONFIRMED
LOCATION:Junior Ballroom C
END:VEVENT
END:VCALENDAR