BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//prima-2022//speaker calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZOME
TZID:America/Vancouver
TZURL:http://tzurl.org/zoneinfo-outlook/America/Vancouver
X-LIC-LOCATION:America/Vancouver
BEGIN:DAYLIGHT
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
TZNAME:PDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
TZNAME:PST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP;TZID=America/Vancouver:20221208T103000
DTSTART;TZID=America/Vancouver:20221208T103000
DTEND;TZID=America/Vancouver:20221208T112000
UID:20221208T103000@prima2022.primamath.org
SUMMARY:Infinite dimensional geometric invariant theory and gauged Gromov-Witten theory.
DESCRIPTION:Harder-Narasimhan (HN) theory gives a structure theorem for principal G bundles on a smooth projective curve. A bundle is either semistable, or it admits a canonical filtration whose associated graded bundle is semistable in a graded sense. After reviewing recent advances in extending HN theory to arbitrary algebraic stacks, I will discuss work in progress with Andres Fernandez Herrero to apply this general machinery to the stack of "gauged" maps from a curve C to a G-scheme X, where G is a reductive group and X is projective over an affine scheme. Our main application is to use HN theory for gauged maps to compute generating functions for K-theoretic enumerative invariants known as gauged Gromov-Witten invariants. This problem is interesting more broadly because it can be formulated as an example of an infinite dimensional analog of the usual set up of geometric invariant theory, which has applications to other moduli problems.
STATUS:CONFIRMED
LOCATION:Finback
END:VEVENT
END:VCALENDAR