Kazhdan＇s property (T) for $\operatorname{Aut}\left(F_{n}\right)$ and $E L_{n}(\mathcal{R})$

Narutaka OZAWA（小澤 登高）

co RIMS，Kyoto University

PRIMA 2022，Vancouver，December 07

Kazhdan＇s property (T) for $\operatorname{Aut}\left(F_{n}\right)$ and $E L_{n}(\mathcal{R})$

Narutaka OZAWA（小澤 登高）

co RIMS，Kyoto University

PRIMA 2022，Vancouver，December 07

C＊－algebras are an esoteric subject－＂the most abstract nonsense that exists in mathematics，＂in Casazza＇s words．＂Nobody outside the area knows much about it．＂

Quanta Magazine：＇Outsiders＇Crack 50－Year－Old Math Problem．
http：／／www．quantamagazine．org／ computer－scientists－solve－kadison－singer－problem－20151124

Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G=S L_{n}(\mathbb{R}), n \geq 3$) and its lattice Γ (e.g., $\Gamma=\operatorname{SL}_{n}(\mathbb{Z}), n \geq 3$) have property (\mathbf{T}).
$\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.
Throughout this talk, $\Gamma=\langle S\rangle$ is a finitely generated group

Definition (for discrete groups)

Γ has $(T) \stackrel{\text { def }}{\rightleftarrows} \exists \kappa=\kappa(\Gamma, S)>0$ s.t. $\forall(\pi, \mathcal{H})$ unitary rep'n and $\forall v \in \mathcal{H}$

$$
d\left(v, \mathcal{H}^{\Gamma}\right) \leq \kappa^{-1} \max _{s \in S}\|v-\pi(s) v\|,
$$

.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}^{\Gamma}}(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite amenable group) does not have property (T)

$$
\frac{1}{\sqrt{2 k+1}} 1_{[-k, k]} \in \ell^{2}(\mathbb{Z}) \text { is asymp. } \mathbb{Z} \text {-invariant, but } \ell^{2}(\mathbb{Z})^{\mathbb{Z}}=\{0\}
$$

Any f.i. subgroup of a property (T) group has finite abelianization.

Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G=S L_{n}(\mathbb{R}), n \geq 3$) and its lattice Γ (e.g., $\Gamma=S L_{n}(\mathbb{Z}), n \geq 3$) have property (T).
$\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.
Throughout this talk, $\Gamma=\langle S\rangle$ is a finitely generated group.

Definition (for discrete groups)

Γ has $(T) \stackrel{\text { def }}{\Longleftrightarrow} \exists \kappa=\kappa(\Gamma, S)>0$ s.t. $\forall(\pi, \mathcal{H})$ unitary rep'n and $\forall v \in \mathcal{H}$ $d\left(v, \mathcal{H}^{\ulcorner }\right) \leq \kappa^{-1} \max _{s \in S}\|v-\pi(s) v\|$,
i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}}\ulcorner(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups. - \mathbb{Z} (or any infinite amenable group) does not have property (T) $\frac{1}{\sqrt{2 k+1}} 1_{[-k, k]} \in \ell^{2}(\mathbb{Z})$ is asymp. \mathbb{Z}-invariant, but $\ell^{2}(\mathbb{Z})^{\mathbb{Z}}=\{0\}$ Any f.i. subgroup of a property (T) group has finite abelianization.

Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G=\operatorname{SL}_{n}(\mathbb{R}), n \geq 3$) and its lattice Γ (e.g., $\Gamma=\operatorname{SL}_{n}(\mathbb{Z}), n \geq 3$) have property (\mathbf{T}).
$\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.
Throughout this talk, $\Gamma=\langle S\rangle$ is a finitely generated group.

Definition (for discrete groups)

Γ has $(T) \stackrel{\text { def }}{\Longleftrightarrow} \exists \kappa=\kappa(\Gamma, S)>0$ s.t. $\forall(\pi, \mathcal{H})$ unitary rep'n and $\forall v \in \mathcal{H}$

$$
d\left(v, \mathcal{H}^{\ulcorner }\right) \leq \kappa^{-1} \max _{s \in S}\|v-\pi(s) v\|,
$$

i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}}\ulcorner(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite amenable group) does not have property (T) $\frac{1}{\sqrt{2 k+1}} 1_{[-k, k]} \in \ell^{2}(\mathbb{Z})$ is asymp. \mathbb{Z}-invariant, but $\ell^{2}(\mathbb{Z})^{\mathbb{Z}}=\{0\}$ Any f.i. subgroup of a property (T) group has finite abelianization.

Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G=\operatorname{SL}_{n}(\mathbb{R}), n \geq 3$) and its lattice Γ (e.g., $\Gamma=\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$) have property (\mathbf{T}).
$\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.
Throughout this talk, $\Gamma=\langle S\rangle$ is a finitely generated group.

Definition (for discrete groups)

Γ has $(T) \stackrel{\text { def }}{\Longleftrightarrow} \exists \kappa=\kappa(\Gamma, S)>0$ s.t. $\forall(\pi, \mathcal{H})$ unitary rep'n and $\forall v \in \mathcal{H}$

$$
d\left(v, \mathcal{H}^{\ulcorner }\right) \leq \kappa^{-1} \max _{s \in S}\|v-\pi(s) v\|,
$$

i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}} \Gamma(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite amenable group) does not have property (T).
$\because \frac{1}{\sqrt{2 k+1}} 1_{[-k, k]} \in \ell^{2}(\mathbb{Z})$ is asymp. \mathbb{Z}-invariant, but $\ell^{2}(\mathbb{Z})^{\mathbb{Z}}=\{0\}$.

Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G=\operatorname{SL}_{n}(\mathbb{R}), n \geq 3$) and its lattice Γ (e.g., $\Gamma=\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$) have property (\mathbf{T}).
$\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.
Throughout this talk, $\Gamma=\langle S\rangle$ is a finitely generated group.

Definition (for discrete groups)

Γ has $(T) \stackrel{\text { def }}{\Longleftrightarrow} \exists \kappa=\kappa(\Gamma, S)>0$ s.t. $\forall(\pi, \mathcal{H})$ unitary rep'n and $\forall v \in \mathcal{H}$

$$
d\left(v, \mathcal{H}^{\ulcorner }\right) \leq \kappa^{-1} \max _{s \in S}\|v-\pi(s) v\|,
$$

i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}} \Gamma(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite amenable group) does not have property (T).
$\because \frac{1}{\sqrt{2 k+1}} 1_{[-k, k]} \in \ell^{2}(\mathbb{Z})$ is asymp. \mathbb{Z}-invariant, but $\ell^{2}(\mathbb{Z})^{\mathbb{Z}}=\{0\}$.
\rightsquigarrow Any f.i. subgroup of a property (T) group has finite abelianization.

An application of property (T): Expander graphs

Definition

A finite connected graph X is an ε-expander if for $\forall A \subset X$ (vertices)

$$
|\partial A| \geq \varepsilon|A|\left(1-\frac{|A|}{|X|}\right) .
$$

- For $\mathcal{N}_{k}(A):=\{x \in X: d(x, A) \leq k\}$, $\left|\mathcal{N}_{k}(A)\right| \geq\left(1+\frac{\varepsilon}{2}\right)^{k}|A|$ until it reaches $\frac{1}{2}|X|$. After that $\left|\mathcal{N}_{k}(A)^{c}\right|$ decreases by a factor $1+\frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large ε-expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

$\Gamma=\langle S\rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup

$$
\begin{aligned}
& X=\text { Cayley }(\Gamma / N, S), \text { where Edges }=\{\{x, x s\}: x \in \Gamma / N, s \in S\}, \\
& \text { is a } \kappa(\Gamma, S)^{2} \text {-expander. }
\end{aligned}
$$

E.g., $\Gamma=\operatorname{SL}(3, \mathbb{Z}), S=\left\{I+E_{i j}: i \neq j\right\}$, and $X_{q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \in \mathbb{N}$.
? What if $S_{p}=\left\{1+p E_{i j}: i \neq j\right\}$ and $X_{p, q}=\mathrm{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \perp p$?

An application of property (T): Expander graphs

Definition

A finite connected graph X is an ε-expander if for $\forall A \subset X$ (vertices)

$$
|\partial A| \geq \varepsilon|A|\left(1-\frac{|A|}{|X|}\right) .
$$

- For $\mathcal{N}_{k}(A):=\{x \in X: d(x, A) \leq k\}$,
$\left|\mathcal{N}_{k}(A)\right| \geq\left(1+\frac{\varepsilon}{2}\right)^{k}|A|$ until it reaches $\frac{1}{2}|X|$.
After that $\left|\mathcal{N}_{k}(A)^{\mathrm{c}}\right|$ decreases by a factor $1+\frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large ε-expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

$\Gamma=\langle S\rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup
$X=$ Cayley $(\Gamma / N, S)$, where Edges $=\{\{x, x s\}: x \in \Gamma / N, s \in S\}$ is a $\kappa(\Gamma, S)^{2}$-expander.
E.g., $\Gamma=\operatorname{SL}(3, \mathbb{Z}), S=\left\{I+E_{i j}: i \neq j\right\}$, and $X_{q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \in \mathbb{N}$.
? What if $S_{p}=\left\{I+p E_{i j}: i \neq j\right\}$ and $X_{p, q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \perp p$?

An application of property (T): Expander graphs

Definition

A finite connected graph X is an ε-expander if for $\forall A \subset X$ (vertices)

$$
|\partial A| \geq \varepsilon|A|\left(1-\frac{|A|}{|X|}\right) .
$$

- For $\mathcal{N}_{k}(A):=\{x \in X: \mathrm{d}(x, A) \leq k\}$, $\left|\mathcal{N}_{k}(A)\right| \geq\left(1+\frac{\varepsilon}{2}\right)^{k}|A|$ until it reaches $\frac{1}{2}|X|$. After that $\left|\mathcal{N}_{k}(A)^{c}\right|$ decreases by a factor $1+\frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large ε-expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)
$\Gamma=\langle S\rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup
$X=$ Cayley $(\Gamma / N, S)$, where Edges $=\{\{x, x s\}: x \in \Gamma / N, s \in S\}$ is a $\kappa(\Gamma, S)^{2}$-expander.
E.g., $\Gamma=\operatorname{SL}(3, \mathbb{Z}), S=\left\{I+E_{i j}: i \neq j\right\}$, and $X_{q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \in \mathbb{N}$.
? What if $S_{p}=\left\{I+p E_{i j}: i \neq j\right\}$ and $X_{p, q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \perp p$?

An application of property (T): Expander graphs

Definition

A finite connected graph X is an ε-expander if for $\forall A \subset X$ (vertices)

$$
|\partial A| \geq \varepsilon|A|\left(1-\frac{|A|}{|X|}\right) .
$$

- For $\mathcal{N}_{k}(A):=\{x \in X: \mathrm{d}(x, A) \leq k\}$, $\left|\mathcal{N}_{k}(A)\right| \geq\left(1+\frac{\varepsilon}{2}\right)^{k}|A|$ until it reaches $\frac{1}{2}|X|$. After that $\left|\mathcal{N}_{k}(A)^{c}\right|$ decreases by a factor $1+\frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large ε-expanders with degree and ε fixed.

\square Explicit construction of expanders (Margulis 1973)
$\Gamma=\langle S\rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup $X=$ Cayley $(\Gamma / N, S)$, where Edges $=\{\{x, x s\}: x \in \Gamma / N, s \in S\}$ is a $\kappa(\Gamma, S)^{2}$-expander.
E.g., $\Gamma=\operatorname{SL}(3, \mathbb{Z}), S=\left\{I+E_{i j}: i \neq j\right\}$, and $X_{q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \in \mathbb{N}$.
\square

An application of property (T): Expander graphs

Definition

A finite connected graph X is an ε-expander if for $\forall A \subset X$ (vertices)

$$
|\partial A| \geq \varepsilon|A|\left(1-\frac{|A|}{|X|}\right) .
$$

- For $\mathcal{N}_{k}(A):=\{x \in X: \mathrm{d}(x, A) \leq k\}$, $\left|\mathcal{N}_{k}(A)\right| \geq\left(1+\frac{\varepsilon}{2}\right)^{k}|A|$ until it reaches $\frac{1}{2}|X|$. After that $\left|\mathcal{N}_{k}(A)^{\mathrm{c}}\right|$ decreases by a factor $1+\frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large ε-expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

$\Gamma=\langle S\rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup
$\rightsquigarrow X=$ Cayley $(\Gamma / N, S)$, where Edges $=\{\{x, x s\}: x \in \Gamma / N, s \in S\}$, is a $\kappa(\Gamma, S)^{2}$-expander.
E.g., $\Gamma=\operatorname{SL}(3, \mathbb{Z}), S=\left\{I+E_{i j}: i \neq j\right\}$, and $X_{q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \in \mathbb{N}$.

An application of property (T): Expander graphs

Definition

A finite connected graph X is an ε-expander if for $\forall A \subset X$ (vertices)

$$
|\partial A| \geq \varepsilon|A|\left(1-\frac{|A|}{|X|}\right) .
$$

- For $\mathcal{N}_{k}(A):=\{x \in X: \mathrm{d}(x, A) \leq k\}$, $\left|\mathcal{N}_{k}(A)\right| \geq\left(1+\frac{\varepsilon}{2}\right)^{k}|A|$ until it reaches $\frac{1}{2}|X|$. After that $\left|\mathcal{N}_{k}(A)^{\mathrm{c}}\right|$ decreases by a factor $1+\frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large ε-expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

$\Gamma=\langle S\rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup
$\rightsquigarrow X=$ Cayley $(\Gamma / N, S)$, where Edges $=\{\{x, x s\}: x \in \Gamma / N, s \in S\}$, is a $\kappa(\Gamma, S)^{2}$-expander.
E.g., $\Gamma=\operatorname{SL}(3, \mathbb{Z}), S=\left\{I+E_{i j}: i \neq j\right\}$, and $X_{q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \in \mathbb{N}$.
? What if $S_{p}=\left\{I+p E_{i j}: i \neq j\right\}$ and $X_{p, q}=\operatorname{SL}(3, \mathbb{Z} / q \mathbb{Z}), q \perp p$?

Some examples of property (T) groups

- $\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$, (Kazhdan 1967), but not $\mathrm{SL}_{2}(\mathbb{Z})$.
- $\mathrm{EL}_{n}(\mathcal{R})=\left\langle e_{i j}(r): i \neq j, r \in \mathcal{R}\right\rangle \subset \mathrm{GL}_{n}(\mathcal{R}), n \geq 3$, where \mathcal{R} finitely generated ring and $e_{i j}(r):=I_{n}+r E_{i j}$ (Shalom \& Vaserstein, Ershov-Jaikin-Zapirain 2006-08).
- $\operatorname{Aut}\left(F_{n}\right), n \geq 4$. (Kaluba-Nowak-O., K-Kielak-N., Nitsche 17-20).
$\mathbf{F}_{n} \rightarrow \mathbb{Z}^{n}$ abelianization $\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
$\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{2}\right)$ does not have (T). Neither $\operatorname{Aut}\left(\mathbf{F}_{3}\right)$ (McCool 1989).
! The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky-Pak 01)

Aut $^{+}\left(\mathbf{F}_{n}\right)=\left\langle R_{i, j}, I_{i, j}\right\rangle \leq_{\text {index }} 2 \operatorname{Aut}\left(\mathbf{F}_{n}\right)$, where $\mathbf{F}_{n}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ and

$$
\begin{aligned}
R_{i, j}:\left(g_{1}, \ldots, g_{n}\right) & \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{i} g_{j}, g_{i+1}, \ldots, g_{n}\right), \\
L_{i, j}:\left(g_{1}, \ldots, g_{n}\right) & \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{j} g_{i}, g_{i+1} \ldots, g_{n}\right) .
\end{aligned}
$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank $<n$ via the PRA random walk

$$
\text { Aut }^{+}\left(\mathbf{F}_{n}\right) \curvearrowright\left\{\left(h_{1}, \ldots, h_{n}\right) \in \Lambda^{n}: \Lambda=\left\langle h_{1}, \ldots, h_{n}\right\rangle\right\} .
$$

Some examples of property (T) groups

- $\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$, (Kazhdan 1967), but not $\mathrm{SL}_{2}(\mathbb{Z})$.
- $\mathrm{EL}_{n}(\mathcal{R})=\left\langle e_{i j}(r): i \neq j, r \in \mathcal{R}\right\rangle \subset \mathrm{GL}_{n}(\mathcal{R}), n \geq 3$, where \mathcal{R} finitely generated ring and $e_{i j}(r):=I_{n}+r E_{i j}$ (Shalom \& Vaserstein, Ershov-Jaikin-Zapirain 2006-08).
- $\operatorname{Aut}\left(F_{n}\right), n \geq 4$. (Kaluba-Nowak-O., K-Kielak-N., Nitsche 17-20)

$$
\begin{aligned}
& \mathbf{F}_{n} \rightarrow \mathbb{Z}^{n} \text { abelianization } \rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=\mathrm{GL}_{n}(\mathbb{Z}) . \\
& \rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{2}\right) \text { does not have }(T) \text {. Neither } \operatorname{Aut}\left(\mathbf{F}_{3}\right)(\operatorname{McCool} 1989) .
\end{aligned}
$$

! The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al 05, Lubotzky-Pak 01)

Aut ${ }^{+}\left(\mathbf{F}_{n}\right)=\left\langle R_{i, j}, L_{i, j}\right\rangle \leq_{\text {index } 2} \operatorname{Aut}\left(\mathbf{F}_{n}\right)$, where $\mathbf{F}_{n}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ and

$$
\begin{aligned}
R_{i, j}:\left(g_{1}, \ldots, g_{n}\right) & \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{i} g_{j}, g_{i+1}, \ldots, g_{n}\right), \\
L_{i, j}:\left(g_{1}, \ldots, g_{n}\right) & \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{j} g_{i}, g_{i+1} \ldots, g_{n}\right) .
\end{aligned}
$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank $<n$ via the PRA random walk

$$
\text { Aut }^{+}\left(\mathbf{F}_{n}\right) \curvearrowright\left\{\left(h_{1}, \ldots, h_{n}\right) \in \Lambda^{n}: \Lambda=\left\langle h_{1}, \ldots, h_{n}\right\rangle\right\} .
$$

Some examples of property (T) groups

- $\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$, (Kazhdan 1967), but not $\mathrm{SL}_{2}(\mathbb{Z})$.
- $E L_{n}(\mathcal{R})=\left\langle e_{i j}(r): i \neq j, r \in \mathcal{R}\right\rangle \subset \mathrm{GL}_{n}(\mathcal{R}), n \geq 3$, where \mathcal{R} finitely generated ring and $e_{i j}(r):=I_{n}+r E_{i j}$ (Shalom \& Vaserstein, Ershov-Jaikin-Zapirain 2006-08).
- Aut $\left(\mathbf{F}_{n}\right), n \geq$ 4. (Kaluba-Nowak-O., K-Kielak-N., Nitsche 17-20).
$\mathbf{F}_{n} \rightarrow \mathbb{Z}^{n}$ abelianization $\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
$\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{2}\right)$ does not have (T). Neither $\operatorname{Aut}\left(\mathbf{F}_{3}\right)$ (McCool 1989).
! The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky-Pak 01)

Aut ${ }^{+}\left(\mathbf{F}_{n}\right)=\left\langle R_{i, j}, L_{i, j}\right\rangle \leq_{\text {index } 2} \operatorname{Aut}\left(\mathbf{F}_{n}\right)$, where $\mathbf{F}_{n}=\left\langle g_{1}\right.$,

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank $<n$ via the PRA random walk

$$
\operatorname{Aut}^{+}\left(\mathbf{F}_{n}\right) \curvearrowright\left\{\left(h_{1}, \ldots, h_{n}\right) \in \Lambda^{n}: \Lambda=\left\langle h_{1}, \ldots, h_{n}\right\rangle\right\} .
$$

Some examples of property（ T ）groups

－ $\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$ ，（Kazhdan 1967），but not $\mathrm{SL}_{2}(\mathbb{Z})$ ．
－$E L_{n}(\mathcal{R})=\left\langle e_{i j}(r): i \neq j, r \in \mathcal{R}\right\rangle \subset \mathrm{GL}_{n}(\mathcal{R}), n \geq 3$ ， where \mathcal{R} finitely generated ring and $e_{i j}(r):=I_{n}+r E_{i j}$
（Shalom \＆Vaserstein，Ershov－Jaikin－Zapirain 2006－08）．
－Aut $\left(\mathbf{F}_{n}\right), n \geq$ 4．（Kaluba－Nowak－O．，K－Kielak－N．，Nitsche 17－20）．
$\mathbf{F}_{n} \rightarrow \mathbb{Z}^{n}$ abelianization $\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$ ．
$\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{2}\right)$ does not have（T）．Neither $\operatorname{Aut}\left(\mathbf{F}_{3}\right)$（McCool 1989）．
！The proof is heavily computer－assisted．

Product Replacement Algorithm（Celler et al．95，Lubotzky－Pak 01）

Aut ${ }^{+}\left(\mathbf{F}_{n}\right)=\left\langle R_{i, j}, L_{i, j}\right\rangle \leq_{\text {index } 2} \operatorname{Aut}\left(\mathbf{F}_{n}\right)$ ，where $\mathbf{F}_{n}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ and

PRA is a practical algorithm to obtain＂random＂elements in a given finite group Λ of rank $<n$ via the PRA random walk

$$
\text { Aut }^{+}\left(\mathbf{F}_{n}\right) \curvearrowright\left\{\left(h_{1}, \ldots, h_{n}\right) \in \Lambda^{n}: \Lambda=\left\langle h_{1}, \ldots, h_{n}\right\rangle\right\} .
$$

Some examples of property (T) groups

- $\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$, (Kazhdan 1967), but not $\mathrm{SL}_{2}(\mathbb{Z})$.
- $E L_{n}(\mathcal{R})=\left\langle e_{i j}(r): i \neq j, r \in \mathcal{R}\right\rangle \subset \mathrm{GL}_{n}(\mathcal{R}), n \geq 3$, where \mathcal{R} finitely generated ring and $e_{i j}(r):=I_{n}+r E_{i j}$ (Shalom \& Vaserstein, Ershov-Jaikin-Zapirain 2006-08).
- Aut $\left(\mathbf{F}_{n}\right), n \geq$ 4. (Kaluba-Nowak-O., K-Kielak-N., Nitsche 17-20).
$\mathbf{F}_{n} \rightarrow \mathbb{Z}^{n}$ abelianization $\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
$\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{2}\right)$ does not have (T). Neither $\operatorname{Aut}\left(\mathbf{F}_{3}\right)$ (McCool 1989).
! The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky-Pak 01)
Aut ${ }^{+}\left(\mathbf{F}_{n}\right)=\left\langle R_{i, j}, L_{i, j}\right\rangle \leq_{\text {index } 2} \operatorname{Aut}\left(\mathbf{F}_{n}\right)$, where $\mathbf{F}_{n}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ and

$$
\begin{aligned}
R_{i, j}: & \left(g_{1}, \ldots, g_{n}\right) \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{i} g_{j}, g_{i+1}, \ldots, g_{n}\right), \\
L_{i, j} & :\left(g_{1}, \ldots, g_{n}\right) \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{j} g_{i}, g_{i+1}, \ldots, g_{n}\right) .
\end{aligned}
$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank $<n$ via the PRA random walk

Aut $^{+}\left(\mathbf{F}_{n}\right) \curvearrowright\left\{\left(h_{1}, \ldots, h_{n}\right) \in \Lambda^{n}: \Lambda=\left\langle h_{1}, \ldots, h_{n}\right\rangle\right\}$.

Some examples of property (T) groups

- $\mathrm{SL}_{n}(\mathbb{Z}), n \geq 3$, (Kazhdan 1967), but not $\mathrm{SL}_{2}(\mathbb{Z})$.
- $E L_{n}(\mathcal{R})=\left\langle e_{i j}(r): i \neq j, r \in \mathcal{R}\right\rangle \subset \mathrm{GL}_{n}(\mathcal{R}), n \geq 3$, where \mathcal{R} finitely generated ring and $e_{i j}(r):=I_{n}+r E_{i j}$
(Shalom \& Vaserstein, Ershov-Jaikin-Zapirain 2006-08).
- Aut $\left(\mathbf{F}_{n}\right), n \geq$ 4. (Kaluba-Nowak-O., K-Kielak-N., Nitsche 17-20).
$\mathbf{F}_{n} \rightarrow \mathbb{Z}^{n}$ abelianization $\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$.
$\rightsquigarrow \operatorname{Aut}\left(\mathbf{F}_{2}\right)$ does not have (T). Neither $\operatorname{Aut}\left(\mathbf{F}_{3}\right)$ (McCool 1989).
! The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky-Pak 01)
Aut ${ }^{+}\left(\mathbf{F}_{n}\right)=\left\langle R_{i, j}, L_{i, j}\right\rangle \leq_{\text {index } 2} \operatorname{Aut}\left(\mathbf{F}_{n}\right)$, where $\mathbf{F}_{n}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ and

$$
\begin{aligned}
R_{i, j}: & \left(g_{1}, \ldots, g_{n}\right) \\
L_{i, j} & :\left(g_{1}, \ldots, g_{n}, \ldots, g_{i-1}, g_{i} g_{j}, g_{i+1}, \ldots, g_{n}\right), \\
& \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{j} g_{i}, g_{i+1} \ldots, g_{n}\right) .
\end{aligned}
$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank $<n$ via the PRA random walk

$$
\text { Aut }^{+}\left(\mathbf{F}_{n}\right) \curvearrowright\left\{\left(h_{1}, \ldots, h_{n}\right) \in \Lambda^{n}: \Lambda=\left\langle h_{1}, \ldots, h_{n}\right\rangle\right\} .
$$

Noncommutative real algebraic geometry of property (T)
Hilbert's 17th Pb: $f \in \mathbb{R}\left(x_{1}, \ldots, x_{d}\right), f \geq 0$ on \mathbb{R}^{d}
(E. Artin 1927) $\quad \Longrightarrow f=\sum_{i} g_{i}^{2}$ for some $g_{1}, \ldots, g_{k} \in \mathbb{R}\left(x_{1}, \ldots, x_{d}\right)$.
$\mathbb{R}[\Gamma]$ real group algebra with the involution $\left(\sum_{t} \alpha_{t} t\right)^{*}=\sum_{t} \alpha_{t} t^{-1}$ $\Sigma^{2} \mathbb{R}[\Gamma]:=\left\{\sum_{i} f_{i}^{*} f_{i}\right\}=\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{\Gamma}^{+}\right\}$positive cone Here \mathbb{M}_{Γ}^{+}finitely supported positive semidefinite matrices.

- $\mathbb{B}(\mathcal{H})^{+}:=\left\{A=A^{*}:\langle A v, v\rangle \geq 0 \forall v \in \mathcal{H}\right\}=\Sigma^{2} \mathbb{B}(\mathcal{H})$ psd operators.
- $\forall(\pi, \mathcal{H})$ unitary rep'n, $\pi\left(\sum_{i} f_{i}^{*} f_{i}\right)=\sum_{i} \pi\left(f_{i}\right)^{*} \pi\left(f_{i}\right) \geq 0$ in $\mathbb{B}(\mathcal{H})$.
- $\mathrm{C}^{*}[\Gamma]$ the universal enveloping C^{*}-algebra of $\mathbb{R}[\Gamma]$.

Laplacian: For $\Gamma=\langle S\rangle$,

$$
\Delta:=\sum_{s \in S}(1-s)^{*}(1-s)=2|S|-\sum_{s \in S}\left(s+s^{-1}\right) \in \Sigma^{2} \mathbb{R}[\Gamma] .
$$

Then, $\langle\pi(\Delta) v, v\rangle=\sum_{s \in S}\|v-\pi(s) v\|^{2}$ and
Γ has $(\mathrm{T}) \Longleftrightarrow \exists \lambda>0 \quad \forall(\pi, \mathcal{H}) \quad \operatorname{Sp}(\pi(\Delta)) \subset\{0\} \cup[\lambda, \infty)$
$\Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \geq 0$ in $C^{*}[\Gamma]$ $\rightsquigarrow \kappa(\Gamma, S) \geq \sqrt{\lambda /|S|}$

Hilbert's 17th Pb: $f \in \mathbb{R}\left(x_{1}, \ldots, x_{d}\right), f \geq 0$ on \mathbb{R}^{d}
(E. Artin 1927) $\quad \Longrightarrow f=\sum_{i} g_{i}^{2}$ for some $g_{1}, \ldots, g_{k} \in \mathbb{R}\left(x_{1}, \ldots, x_{d}\right)$.
$\mathbb{R}[\Gamma]$ real group algebra with the involution $\left(\sum_{t} \alpha_{t} t\right)^{*}=\sum_{t} \alpha_{t} t^{-1}$.
$\Sigma^{2} \mathbb{R}[\Gamma]:=\left\{\sum_{i} f_{i}^{*} f_{i}\right\}=\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{\Gamma}^{+}\right\}$positive cone
Here \mathbb{M}_{Γ}^{+}finitely supported positive semidefinite matrices.

- $\mathbb{B}(\mathcal{H})^{+}:=\left\{A=A^{*}:\langle A v, v\rangle \geq 0 \forall v \in \mathcal{H}\right\}=\Sigma^{2} \mathbb{B}(\mathcal{H})$ psd operators.
- $\forall(\pi, \mathcal{H})$ unitary rep'n, $\pi\left(\sum_{i} f_{i}^{*} f_{i}\right)=\sum_{i} \pi\left(f_{i}\right)^{*} \pi\left(f_{i}\right) \geq 0$ in $\mathbb{B}(\mathcal{H})$.
- $C^{*}[\Gamma]$ the universal enveloping C^{*}-algebra of $\mathbb{R}[\Gamma]$.

Laplacian: For $\Gamma=\langle S\rangle$,

Then, $\langle\pi(\Delta) v, v\rangle=\sum_{s \in S}\|v-\pi(s) v\|^{2}$ and
Γ has $(\mathrm{T}) \Longleftrightarrow \exists \lambda>0 \quad \forall(\pi, \mathcal{H}) \quad \operatorname{Sp}(\pi(\Delta)) \subset\{0\} \cup[\lambda, \infty)$

Hilbert's 17th Pb: $f \in \mathbb{R}\left(x_{1}, \ldots, x_{d}\right), f \geq 0$ on \mathbb{R}^{d}
(E. Artin 1927) $\quad \Longrightarrow f=\sum_{i} g_{i}^{2}$ for some $g_{1}, \ldots, g_{k} \in \mathbb{R}\left(x_{1}, \ldots, x_{d}\right)$.
$\mathbb{R}[\Gamma]$ real group algebra with the involution $\left(\sum_{t} \alpha_{t} t\right)^{*}=\sum_{t} \alpha_{t} t^{-1}$.

$$
\Sigma^{2} \mathbb{R}[\Gamma]:=\left\{\sum_{i} f_{i}^{*} f_{i}\right\}=\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{\Gamma}^{+}\right\} \text {positive cone }
$$

Here \mathbb{M}_{Γ}^{+}finitely supported positive semidefinite matrices.

- $\mathbb{B}(\mathcal{H})^{+}:=\left\{A=A^{*}:\langle A v, v\rangle \geq 0 \forall v \in \mathcal{H}\right\}=\Sigma^{2} \mathbb{B}(\mathcal{H})$ psd operators.
- $\forall(\pi, \mathcal{H})$ unitary rep'n, $\pi\left(\sum_{i} f_{i}^{*} f_{i}\right)=\sum_{i} \pi\left(f_{i}\right)^{*} \pi\left(f_{i}\right) \geq 0$ in $\mathbb{B}(\mathcal{H})$.
- $C^{*}[\Gamma]$ the universal enveloping C^{*}-algebra of $\mathbb{R}[\Gamma]$.

Laplacian: For $\Gamma=\langle S\rangle$,

$$
\Delta:=\sum_{s \in S}(1-s)^{*}(1-s)=2|S|-\sum_{s \in S}\left(s+s^{-1}\right) \in \Sigma^{2} \mathbb{R}[\Gamma]
$$

Then, $\langle\pi(\Delta) v, v\rangle=\sum_{s \in S}\|v-\pi(s) v\|^{2}$ and

Hilbert's 17th Pb: $f \in \mathbb{R}\left(x_{1}, \ldots, x_{d}\right), f \geq 0$ on \mathbb{R}^{d}
(E. Artin 1927) $\quad \Longrightarrow f=\sum_{i} g_{i}^{2}$ for some $g_{1}, \ldots, g_{k} \in \mathbb{R}\left(x_{1}, \ldots, x_{d}\right)$.
$\mathbb{R}[\Gamma] \quad$ real group algebra with the involution $\left(\sum_{t} \alpha_{t} t\right)^{*}=\sum_{t} \alpha_{t} t^{-1}$.

$$
\Sigma^{2} \mathbb{R}[\Gamma]:=\left\{\sum_{i} f_{i}^{*} f_{i}\right\}=\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{\Gamma}^{+}\right\} \text {positive cone }
$$

Here \mathbb{M}_{Γ}^{+}finitely supported positive semidefinite matrices.

- $\mathbb{B}(\mathcal{H})^{+}:=\left\{A=A^{*}:\langle A v, v\rangle \geq 0 \forall v \in \mathcal{H}\right\}=\Sigma^{2} \mathbb{B}(\mathcal{H})$ psd operators.
- $\forall(\pi, \mathcal{H})$ unitary rep'n, $\pi\left(\sum_{i} f_{i}^{*} f_{i}\right)=\sum_{i} \pi\left(f_{i}\right)^{*} \pi\left(f_{i}\right) \geq 0$ in $\mathbb{B}(\mathcal{H})$.
- $C^{*}[\Gamma]$ the universal enveloping C^{*}-algebra of $\mathbb{R}[\Gamma]$.

Laplacian: For $\Gamma=\langle S\rangle$,

$$
\Delta:=\sum_{s \in S}(1-s)^{*}(1-s)=2|S|-\sum_{s \in S}\left(s+s^{-1}\right) \in \Sigma^{2} \mathbb{R}[\Gamma]
$$

Then, $\langle\pi(\Delta) v, v\rangle=\sum_{s \in S}\|v-\pi(s) v\|^{2}$ and
Γ has $(\mathrm{T}) \Longleftrightarrow \exists \lambda>0 \quad \forall(\pi, \mathcal{H}) \quad \operatorname{Sp}(\pi(\Delta)) \subset\{0\} \cup[\lambda, \infty)$ $\Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \geq 0$, in $C^{*}[\Gamma]$ $\rightsquigarrow \kappa(\Gamma, S) \geq \sqrt{\lambda /|S|}$

Algebraic characterization of property (T)

Let $\Gamma=\langle S\rangle$.
$\mathbb{R}[\Gamma]$ real group algebra with the involution $\left(\sum_{t} \alpha_{t} t\right)^{*}=\sum_{t} \alpha_{t} t^{-1}$.

$$
\Sigma^{2} \mathbb{R}[\Gamma]:=\left\{\sum_{i} f_{i}^{*} f_{i}\right\}=\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{\Gamma}^{+}\right\}
$$

Here \mathbb{M}_{Γ}^{+}finitely supported positive semidefinite matrices.

$$
\Delta:=\sum_{s \in S}(1-s)^{*}(1-s) \in \Sigma^{2} \mathbb{R}[\Gamma] .
$$

$C^{*}[\Gamma]$ the universal enveloping C^{*}-algebra of $\mathbb{R}[\Gamma]$.
Then,

$$
\Gamma \text { has }(\mathrm{T}) \Longleftrightarrow \exists \lambda>0 \text { such that } \Delta^{2}-\lambda \Delta \geq 0 \text { in } \mathrm{C}^{*}[\Gamma]
$$

Theorem (O 2013)

Algebraic characterization of property (T)

Let $\Gamma=\langle S\rangle$.
$\mathbb{R}[\Gamma]$ real group algebra with the involution $\left(\sum_{t} \alpha_{t} t\right)^{*}=\sum_{t} \alpha_{t} t^{-1}$.

$$
\Sigma^{2} \mathbb{R}[\Gamma]:=\left\{\sum_{i} f_{i}^{*} f_{i}\right\}=\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{\Gamma}^{+}\right\}
$$

Here \mathbb{M}_{Γ}^{+}finitely supported positive semidefinite matrices.

$$
\Delta:=\sum_{s \in S}(1-s)^{*}(1-s) \in \Sigma^{2} \mathbb{R}[\Gamma] .
$$

$C^{*}[\Gamma]$ the universal enveloping C^{*}-algebra of $\mathbb{R}[\Gamma]$.
Then,

$$
\Gamma \text { has }(\mathrm{T}) \Longleftrightarrow \exists \lambda>0 \text { such that } \Delta^{2}-\lambda \Delta \geq 0 \text { in } \mathrm{C}^{*}[\Gamma]
$$

Theorem (O 2013)

Γ has $(T) \Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \succeq 0$ in $\mathbb{R}[\Gamma]$
Stability (Netzer-Thom): It suffices if $\exists \lambda>0 \exists \Theta \in \Sigma^{2} \mathbb{R}[\Gamma]$ such that $\left\|\Delta^{2}-\lambda \Delta-\Theta\right\|_{1} \ll \lambda$.

Algebraic characterization of property (T)

Let $\Gamma=\langle S\rangle$.
$\mathbb{R}[\Gamma]$ real group algebra with the involution $\left(\sum_{t} \alpha_{t} t\right)^{*}=\sum_{t} \alpha_{t} t^{-1}$.

$$
\Sigma^{2} \mathbb{R}[\Gamma]:=\left\{\sum_{i} f_{i}^{*} f_{i}\right\}=\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{\Gamma}^{+}\right\}
$$

Here \mathbb{M}_{Γ}^{+}finitely supported positive semidefinite matrices.

$$
\Delta:=\sum_{s \in S}(1-s)^{*}(1-s) \in \Sigma^{2} \mathbb{R}[\Gamma] .
$$

$C^{*}[\Gamma]$ the universal enveloping C^{*}-algebra of $\mathbb{R}[\Gamma]$.
Then,

$$
\Gamma \text { has }(\mathrm{T}) \Longleftrightarrow \exists \lambda>0 \text { such that } \Delta^{2}-\lambda \Delta \geq 0 \text { in } \mathrm{C}^{*}[\Gamma]
$$

Theorem (O 2013)

Γ has $(T) \Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \succeq 0$ in $\mathbb{R}[\Gamma]$
Stability (Netzer-Thom): It suffices if $\exists \lambda>0 \exists \Theta \in \Sigma^{2} \mathbb{R}[\Gamma]$ such that

$$
\left\|\Delta^{2}-\lambda \Delta-\Theta\right\|_{1} \ll \lambda
$$

Semidefinite Programming (SDP)

Γ has $(T) \Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \in \Sigma^{2} \mathbb{R}[\Gamma]$

$$
\Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0 \text { s.t. } \Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}
$$

By fixing a finite subset $E \in \Gamma$, we arrive at the SDP:

$$
\begin{array}{ll}
\operatorname{maximize} & \lambda \\
\text { subject to } & \Delta^{2}-\lambda \Delta=\sum_{x, y \in E} P_{x, y} x^{-1} y,
\end{array} \quad P \in \mathbb{M}_{E}^{+}, ~ l
$$

- Due to computer capacity limitation, we almost always take

$$
E:=\operatorname{Ball}(2)=\{e\} \cup S \cup S^{2}=\operatorname{supp} \Delta \cup \operatorname{supp} \Delta^{2} .
$$

\rightsquigarrow Size of SDP: dimension $|E|^{2}$ and constraints $\left|E^{-1} E\right|=\mid$ Ball $(4) \mid$.

Certification Procedure:

Suppose (λ_{0}, P_{0}) is a hypothetical solution obtained by a computer:
Find $P_{0} \approx Q^{T} Q$ (with $Q 1=0$) and calculate with guaranteed accuracy

- Solving SDP is computationally hard, but certifying (T) is relatively easy.

Semidefinite Programming (SDP)

Γ has $(T) \Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \in \Sigma^{2} \mathbb{R}[\Gamma]$

$$
\Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0 \text { s.t. } \Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}
$$

By fixing a finite subset $E \in \Gamma$, we arrive at the SDP:

$$
\begin{array}{ll}
\operatorname{maximize} \quad \lambda \\
\text { subject to } & \Delta^{2}-\lambda \Delta=\sum_{x, y \in E} P_{x, y} x^{-1} y,
\end{array} \quad P \in \mathbb{M}_{E}^{+}
$$

- Due to computer capacity limitation, we almost always take

$$
E:=\operatorname{Ball}(2)=\{e\} \cup S \cup S^{2}=\operatorname{supp} \Delta \cup \operatorname{supp} \Delta^{2} .
$$

\rightsquigarrow Size of SDP: dimension $|E|^{2}$ and constraints $\left|E^{-1} E\right|=\mid$ Ball(4)|.

Certification Procedure:

Suppose $\left(\lambda_{0}, P_{0}\right)$ is a hypothetical solution obtained by a computer.
Find $P_{0} \approx Q^{\mathrm{T}} Q$ (with $Q 1=0$) and calculate with guaranteed accuracy

- Solving SDP is computationally hard, but certifying (T) is relatively easy.

Semidefinite Programming (SDP)

Γ has $(T) \Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \in \Sigma^{2} \mathbb{R}[\Gamma]$

$$
\Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0 \text { s.t. } \Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}
$$

By fixing a finite subset $E \in \Gamma$, we arrive at the SDP:

$$
\begin{aligned}
& \text { maximize } \quad \lambda \\
& \text { subject to } \quad \Delta^{2}-\lambda \Delta=\sum_{x, y \in E} P_{x, y} x^{-1} y, \quad P \in \mathbb{M}_{E}^{+}
\end{aligned}
$$

- Due to computer capacity limitation, we almost always take

$$
E:=\operatorname{Ball}(2)=\{e\} \cup S \cup S^{2}=\operatorname{supp} \Delta \cup \operatorname{supp} \Delta^{2} .
$$

\rightsquigarrow Size of SDP: dimension $|E|^{2}$ and constraints $\left|E^{-1} E\right|=\mid$ Ball(4)|.
Certification Procedure:
Suppose $\left(\lambda_{0}, P_{0}\right)$ is a hypothetical solution obtained by a computer.
Find $P_{0} \approx Q^{\mathrm{T}} Q$ (with $Q 1=0$) and calculate with guaranteed accuracy

$$
\left\|\Delta^{2}-\lambda_{0} \Delta-\sum_{x, y}\left(Q^{T} Q\right)_{x, y}(1-x)^{*}(1-y)\right\|_{1} \ll \lambda_{0} .
$$

- Solving SDP is computationally hard, but certifying (T) is relatively easy.

Semidefinite Programming (SDP)

Γ has $(\mathrm{T}) \Longleftrightarrow \exists \lambda>0$ such that $\Delta^{2}-\lambda \Delta \in \Sigma^{2} \mathbb{R}[\Gamma]$

$$
\Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0 \text { s.t. } \Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}
$$

By fixing a finite subset $E \in \Gamma$, we arrive at the SDP:

$$
\begin{aligned}
& \text { maximize } \quad \lambda \\
& \text { subject to } \\
& \Delta^{2}-\lambda \Delta=\sum_{x, y \in E} P_{x, y} x^{-1} y, \quad P \in \mathbb{M}_{E}^{+}
\end{aligned}
$$

- Due to computer capacity limitation, we almost always take

$$
E:=\operatorname{Ball}(2)=\{e\} \cup S \cup S^{2}=\operatorname{supp} \Delta \cup \operatorname{supp} \Delta^{2} .
$$

\leadsto Size of SDP: dimension $|E|^{2}$ and constraints $\left|E^{-1} E\right|=\mid$ Ball $(4) \mid$.

Certification Procedure:

Suppose (λ_{0}, P_{0}) is a hypothetical solution obtained by a computer.
Find $P_{0} \approx Q^{\mathrm{T}} Q$ (with $Q \mathbf{1}=0$) and calculate with guaranteed accuracy

$$
\left\|\Delta^{2}-\lambda_{0} \Delta-\sum_{x, y}\left(Q^{\mathrm{T}} Q\right)_{x, y}(1-x)^{*}(1-y)\right\|_{1} \ll \lambda_{0} .
$$

- Solving SDP is computationally hard, but certifying (T) is relatively easy.

Results

Γ has $(T) \Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0$ s.t. $\Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}$ Results of SDP for $E=\operatorname{Ball}(2)$.

- $S_{n}(\mathbb{Z})$ with $S=\left\{e_{i j}: i \neq j\right\}: \lambda_{3}>0.27, \lambda_{4}>1.3, \lambda_{5}>2.6$.
(Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $\mathrm{SL}_{6}(\mathbb{Z})$.

For Aut ${ }^{+}\left(\mathbf{F}_{4}\right)$, the size of SDP ≈ 10000000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes(\mathbb{Z} / 2)^{\oplus n} \curvearrowright$ Aut $^{+}\left(\mathbf{F}_{n}\right)$.

- $A u t^{+}\left(F_{4}\right)$:
- Aut ${ }^{+}\left(F_{5}\right)$:

Theorem

Aut ${ }^{+}\left(F_{n}\right)$ has property (T) for

- $n=5$ (Kaluba-Nowak-O. 2017)
- $n \geq 6$ (Kaluba-Kielak-Nowak 2018, by "stability" explained below)
- $n=4$ (Nitsche 2020, by a new SDP method)

Results

Γ has $(T) \Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0$ s.t. $\Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}$ Results of SDP for $E=\operatorname{Ball}(2)$.

- $S_{n}(\mathbb{Z})$ with $S=\left\{e_{i j}: i \neq j\right\}: \lambda_{3}>0.27, \lambda_{4}>1.3, \lambda_{5}>2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $\mathrm{SL}_{6}(\mathbb{Z})$.

For Aut ${ }^{+}\left(F_{4}\right)$, the size of SDP ≈ 10000000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes(\mathbb{Z} / 2)^{\oplus n} \curvearrowright$ Aut ${ }^{+}\left(\mathbf{F}_{n}\right)$.

- Aut ${ }^{+}\left(F_{4}\right)$
- $A u t^{+}\left(F_{5}\right)$

Theorem

Aut ${ }^{+}\left(\mathbf{F}_{\pi}\right)$ has property (T) for

- $n=5$ (Kaluba-Nowak-O. 2017)
- $n \geq 6$ (Kaluba-Kielak-Nowak 2018, by "stability" explained below)
- $n=4$ (Nitsche 2020, by a new SDP method)

Results

Γ has $(\mathrm{T}) \Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0$ s.t. $\Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}$ Results of SDP for $E=\operatorname{Ball}(2)$.

- $S_{n}(\mathbb{Z})$ with $S=\left\{e_{i j}: i \neq j\right\}: \lambda_{3}>0.27, \lambda_{4}>1.3, \lambda_{5}>2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $\mathrm{SL}_{6}(\mathbb{Z})$.

For Aut ${ }^{+}\left(F_{4}\right)$, the size of SDP ≈ 10000000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes(\mathbb{Z} / 2)^{\oplus n} \curvearrowright$ Aut $^{+}\left(\mathbf{F}_{n}\right)$.

- $A u t^{+}\left(F_{4}\right)$
- Aut ${ }^{+}\left(F_{5}\right)$

Theorem

Aut ${ }^{+}\left(F_{n}\right)$ has property (T) for

- $n=5$ (Kaluba-Nowak-O. 2017)
- $n \geq 6$ (Kaluba-Kielak-Nowak 2018, by "stability" explained below)
- $n=4$ (Nitsche 2020, by a new SDP method)

Results

Γ has $(\mathrm{T}) \Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0$ s.t. $\Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}$ Results of SDP for $E=\operatorname{Ball}(2)$.

- $\mathrm{SL}_{n}(\mathbb{Z})$ with $S=\left\{e_{i j}: i \neq j\right\}: \lambda_{3}>0.27, \lambda_{4}>1.3, \lambda_{5}>2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $\mathrm{SL}_{6}(\mathbb{Z})$.

For Aut ${ }^{+}\left(F_{4}\right)$, the size of SDP ≈ 10000000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes(\mathbb{Z} / 2)^{\oplus n} \curvearrowright$ Aut ${ }^{+}\left(\mathbf{F}_{n}\right)$.

- Aut ${ }^{+}\left(F_{4}\right)$:
- $A u t^{+}\left(F_{5}\right)$

Theorem

Aut ${ }^{+}\left(\mathbf{F}_{n}\right)$ has property (T) for

- $n=5$ (Kaluba-Nowak-O. 2017)
- $n \geq 6$ (Kaluba-Kielak-Nowak 2018, by "stability" explained below)
- $n=4$ (Nitsche 2020, by a new SDP method)

Results

Γ has $(\mathrm{T}) \Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0$ s.t. $\Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}$ Results of SDP for $E=\operatorname{Ball}(2)$.

- $\mathrm{SL}_{n}(\mathbb{Z})$ with $S=\left\{e_{i j}: i \neq j\right\}: \lambda_{3}>0.27, \lambda_{4}>1.3, \lambda_{5}>2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $\mathrm{SL}_{6}(\mathbb{Z})$.

For Aut ${ }^{+}\left(F_{4}\right)$, the size of SDP ≈ 10000000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes(\mathbb{Z} / 2)^{\oplus n} \curvearrowright$ Aut ${ }^{+}\left(\mathbf{F}_{n}\right)$.

- Aut ${ }^{+}\left(\mathbf{F}_{4}\right): \because \because:=$ No response.
- $A u t^{+}\left(F_{5}\right)$

Theorem

Aut ${ }^{+}\left(\mathbf{F}_{n}\right)$ has property (T) for

- $n=5$ (Kaluba-Nowak-O. 2017)
- $n \geq 6$ (Kaluba-Kielak-Nowak 2018, by "stability" explained below)
- $n=4$ (Nitsche 2020, by a new SDP method)

Results

Γ has $(\mathrm{T}) \Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0$ s.t. $\Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}$ Results of SDP for $E=\operatorname{Ball}(2)$.

- $\mathrm{SL}_{n}(\mathbb{Z})$ with $S=\left\{e_{i j}: i \neq j\right\}: \lambda_{3}>0.27, \lambda_{4}>1.3, \lambda_{5}>2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $\mathrm{SL}_{6}(\mathbb{Z})$.

For Aut ${ }^{+}\left(F_{4}\right)$, the size of SDP ≈ 10000000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes(\mathbb{Z} / 2)^{\oplus n} \curvearrowright$ Aut ${ }^{+}\left(\mathbf{F}_{n}\right)$.

- Aut ${ }^{+}\left(\mathbf{F}_{4}\right): \odot \because \because$ No response.
- Aut ${ }^{+}\left(F_{5}\right)$:

Theorem

Aut ${ }^{+}\left(F_{n}\right)$ has property (T) for

- $n=5$ (Kaluba-Nowak-O. 2017)
- $n \geq 6$ (Kaluba-Kielak-Nowak 2018, by "stability" explained below)
- $n=4$ (Nitsche 2020, by a new SDP method)

Results

Γ has $(\mathrm{T}) \Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0$ s.t. $\Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}$ Results of SDP for $E=\operatorname{Ball}(2)$.

- $\mathrm{SL}_{n}(\mathbb{Z})$ with $S=\left\{e_{i j}: i \neq j\right\}: \lambda_{3}>0.27, \lambda_{4}>1.3, \lambda_{5}>2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $\mathrm{SL}_{6}(\mathbb{Z})$.

For Aut ${ }^{+}\left(F_{4}\right)$, the size of SDP ≈ 10000000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes(\mathbb{Z} / 2)^{\oplus n} \curvearrowright$ Aut ${ }^{+}\left(\mathbf{F}_{n}\right)$.

- Aut ${ }^{+}\left(\mathbf{F}_{4}\right): ~ \odot \odot \odot \quad$ No response.
- Aut ${ }^{+}\left(\mathbf{F}_{5}\right):!\odot \lambda \odot 人 \odot!$ YES!!! with $\lambda>1.2$.

Theorem

Aut ${ }^{+}\left(F_{n}\right)$ has property (T) for

- $n=5$ (Kaluba-Nowak-O. 2017)
- $n \geq 6$ (Kaluba-Kielak-Nowak 2018, by "stability" explained below)
- $n=4$ (Nitsche 2020, by a new SDP method)

Results

Γ has $(\mathrm{T}) \Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0$ s.t. $\Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}$ Results of SDP for $E=\operatorname{Ball}(2)$.

- $S_{n}(\mathbb{Z})$ with $S=\left\{e_{i j}: i \neq j\right\}: \lambda_{3}>0.27, \lambda_{4}>1.3, \lambda_{5}>2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $\mathrm{SL}_{6}(\mathbb{Z})$.

For Aut ${ }^{+}\left(\mathbf{F}_{4}\right)$, the size of SDP ≈ 10000000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes(\mathbb{Z} / 2)^{\oplus n} \curvearrowright$ Aut $^{+}\left(\mathbf{F}_{n}\right)$.

- Aut ${ }^{+}\left(\mathbf{F}_{4}\right): \rightleftharpoons \odot \because \quad$ No response.
- Aut ${ }^{+}\left(\mathbf{F}_{5}\right):!\odot \wedge \odot 人 \odot!$ YES!!! with $\lambda>1.2$.

Theorem

Aut ${ }^{+}\left(F_{n}\right)$ has property (T) for

- $n=5$ (Kaluba-Nowak-O. 2017)
- $n \geq 6$ (Kaluba-Kielak-Nowak 2018, by "stability" explained below)
- $n=4$ (Nitsche 2020, by a new SDP method)

"But they (= computers) are useless. They can only give you answers."

Pablo Picasso, 1968.

Results

Γ has $(\mathrm{T}) \Longleftrightarrow \exists E \Subset \Gamma \exists \lambda>0$ s.t. $\Delta^{2}-\lambda \Delta \in\left\{\sum_{x, y} P_{x, y} x^{-1} y: P \in \mathbb{M}_{E}^{+}\right\}$ Results of SDP for $E=\operatorname{Ball}(2)$.

- $S_{n}(\mathbb{Z})$ with $S=\left\{e_{i j}: i \neq j\right\}: \lambda_{3}>0.27, \lambda_{4}>1.3, \lambda_{5}>2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $\mathrm{SL}_{6}(\mathbb{Z})$.

For Aut ${ }^{+}\left(\mathbf{F}_{4}\right)$, the size of SDP ≈ 10000000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes(\mathbb{Z} / 2)^{\oplus n} \curvearrowright$ Aut $^{+}\left(\mathbf{F}_{n}\right)$.

- Aut ${ }^{+}\left(\mathbf{F}_{4}\right): \rightleftharpoons \odot \because \quad$ No response.
- Aut ${ }^{+}\left(\mathbf{F}_{5}\right):!\odot \wedge \odot 人 \odot!$ YES!!! with $\lambda>1.2$.

Theorem

Aut ${ }^{+}\left(F_{n}\right)$ has property (T) for

- $n=5$ (Kaluba-Nowak-O. 2017)
- $n \geq 6$ (Kaluba-Kielak-Nowak 2018, by "stability" explained below)
- $n=4$ (Nitsche 2020, by a new SDP method)

Property (T) for an infinite series (KKN 2018)

$\Gamma_{n}:=\operatorname{Aut}^{+}\left(\mathbf{F}_{n}\right), \quad S_{n}:=\left\{R_{i, j}, L_{i, j}: i \neq j\right\}, \quad \mathrm{E}_{n}:=\{\{i, j\}: i \neq j\}$
Want to show $\Delta_{n}=\sum_{s \in S_{n}} 1-s$ satisfies $\Delta_{n}^{2}-\lambda_{n} \Delta_{n} \succeq 0$.

$$
\begin{aligned}
\Delta_{n} & =\sum_{\mathrm{e} \in \mathrm{E}_{n}} \Delta_{\mathrm{e}}, \\
\Delta_{n}^{2} & =\sum_{\mathrm{e}} \Delta_{\mathrm{e}}^{2}+\sum_{\mathrm{e} \sim \mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}}+\sum_{\mathrm{e} \perp \mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}} \\
& =: \mathbf{S q}_{n}+\quad \mathbf{\mathbf { A d j } _ { n }}+\mathbf{O} \mathbf{p}_{n} .
\end{aligned}
$$

- Sq_{n} and $\mathbf{O p} p_{n}$ are positive, but Adj_{n} may not.

For $n>m$, let's see what we can tell about Δ_{n} knowing about Δ_{m} :

$$
\begin{aligned}
\sum_{\sigma \in \mathfrak{S}(n)} \sigma\left(\Delta_{m}\right) & =m(m-1) \cdot(n-2)!\cdot \Delta_{n} \\
\sum_{\sigma \in G(n)} \sigma\left(\mathrm{Adj}_{m}\right) & =m(m-1)(m-2) \cdot(n-3)!\cdot \operatorname{Adj}_{n} \\
\sum_{\sigma \in \mathfrak{G}(n)} \sigma\left(\mathrm{Op}_{m}\right) & =m(m-1)(m-2)(m-3) \cdot(n-4)!\cdot \mathrm{Op}_{n}
\end{aligned}
$$

! $\mathbf{O p} \mathbf{p}_{n}$ multiplies faster and overtakes $\mathbf{A d j}_{n}$.
Trial and error on the computer has confirmed

$$
\text { (๑) } \quad \mathbf{A d j}_{5}+\alpha \mathbf{O} \mathbf{p}_{5}-\varepsilon \boldsymbol{\Delta}_{5} \succeq 0
$$

for $\alpha=2$ and $\varepsilon=0.13$. It follows that for $n \geq 2 \alpha+3$
$0 \preceq 60(n-3)!\left(\mathbf{A d j}_{n}+\frac{2 \alpha}{n-3} \mathbf{O} \mathbf{p}_{n}-\frac{n-2}{3} \varepsilon \Delta_{n}\right) \preceq 60(n-3)!\left(\Delta_{n}^{2}-\frac{n-2}{3} \varepsilon \Delta_{n}\right)$.

Property (T) for an infinite series (KKN 2018)
$\Gamma_{n}:=$ Aut $^{+}\left(\mathbf{F}_{n}\right), \quad S_{n}:=\left\{R_{i, j}, L_{i, j}: i \neq j\right\}, \quad \mathrm{E}_{n}:=\{\{i, j\}: i \neq j\}$
Want to show $\Delta_{n}=\sum_{s \in S_{n}} 1-s$ satisfies $\Delta_{n}^{2}-\lambda_{n} \Delta_{n} \succeq 0$.

$$
\begin{aligned}
\Delta_{n} & =\sum_{\mathrm{e} \in \mathrm{E}_{n}} \Delta_{\mathrm{e}}, \\
\Delta_{n}^{2} & =\sum_{\mathrm{e}} \Delta_{\mathrm{e}}^{2}+\sum_{\mathrm{e} \sim \mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}}+\sum_{\mathrm{e}\llcorner\mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}} \\
& =: \mathbf{S q}_{n}+\mathbf{A d j}_{n}+\mathbf{\mathbf { o p } _ { n }} .
\end{aligned}
$$

- $\mathbf{S q}_{n}$ and $\mathbf{O p}_{n}$ are positive, but $\mathbf{A d j}_{n}$ may not.

For $n>m$, let's see what we can tell about Δ_{n} knowing about Δ_{m} :

$$
\begin{aligned}
\sum_{\sigma \in \mathfrak{G}(n)} \sigma\left(\Delta_{m}\right) & =m(m-1) \cdot(n-2)!\cdot \Delta_{n} \\
\sum_{\sigma \in \mathfrak{G}(n)} \sigma\left(\mathbf{A d j}_{m}\right) & =m(m-1)(m-2) \cdot(n-3)!\cdot \mathbf{A d j}_{n} \\
\sum_{\sigma \in \mathfrak{G}(n)} \sigma\left(\mathbf{O p}_{m}\right) & =m(m-1)(m-2)(m-3) \cdot(n-4)!\cdot \mathbf{O p}_{n}
\end{aligned}
$$

$\mathbf{O} \mathbf{p}_{n}$ multiplies faster and overtakes $\mathbf{A d j}_{n}$
Trial and error on the computer has confirmed

$$
\text { (®) } \quad \mathbf{A d j}_{5}+\alpha \mathbf{O} \mathbf{p}_{5}-\varepsilon \Delta_{5} \succeq 0
$$

for $\alpha=2$ and $\varepsilon=0.13$. It follows that for $n \geq 2 \alpha+3$
$0 \preceq 60(n-3)!\left(\mathbf{A d j}_{n}+\frac{2 \alpha}{n-3} \mathbf{O p}_{n}-\frac{n-2}{3} \varepsilon \Delta_{n}\right) \preceq 60(n-3)!\left(\Delta_{n}^{2}-\frac{n-2}{3} \varepsilon \Delta_{n}\right)$.
$\Gamma_{n}:=$ Aut $^{+}\left(\mathbf{F}_{n}\right), \quad S_{n}:=\left\{R_{i, j}, L_{i, j}: i \neq j\right\}, \quad \mathrm{E}_{n}:=\{\{i, j\}: i \neq j\}$
Want to show $\Delta_{n}=\sum_{s \in S_{n}} 1-s$ satisfies $\Delta_{n}^{2}-\lambda_{n} \Delta_{n} \succeq 0$.

$$
\begin{aligned}
\Delta_{n} & =\sum_{\mathrm{e} \in \mathrm{E}_{n}} \Delta_{\mathrm{e}}, \\
\Delta_{n}^{2} & =\sum_{\mathrm{e}} \Delta_{\mathrm{e}}^{2}+\sum_{\mathrm{e} \sim f} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}}+\sum_{\mathrm{e} \perp \mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}} \\
& =: \mathbf{S q}_{n}+\mathbf{A d j}_{n}+\mathbf{O \mathbf { p } _ { n }} .
\end{aligned}
$$

- $\mathbf{S q}_{n}$ and $\mathbf{O p} \mathbf{p}_{n}$ are positive, but $\mathbf{A d j}{ }_{n}$ may not.

For $n>m$, let's see what we can tell about Δ_{n} knowing about Δ_{m} :

$$
\left.\begin{array}{rl}
\sum_{\sigma \in \mathfrak{S}(n)} \sigma\left(\Delta_{m}\right) & =m(m-1) \cdot(n-2)!\cdot \Delta_{n} \\
\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\mathbf{A d j} \\
m
\end{array}\right)=m(m-1)(m-2) \cdot(n-3)!\cdot \mathbf{A d j}_{n} .
$$

! $\mathbf{O} \mathbf{p}_{n}$ multiplies faster and overtakes $\mathbf{A d j}_{n}$.
for $\alpha=2$ and $\varepsilon=0.13$. It follows that for $n \geq 2 \alpha+3$
$0 \preceq 60(n-3)!\left(\mathbf{A d j}_{n}+\frac{2 \alpha}{n-3} \mathbf{O} \mathbf{p}_{n}-\frac{n-2}{3} \varepsilon \Delta_{n}\right) \preceq 60(n-3)!\left(\Delta_{n}^{2}-\frac{n-2}{3} \varepsilon \Delta_{n}\right)$
$\Gamma_{n}:=\operatorname{Aut}^{+}\left(\mathbf{F}_{n}\right), \quad S_{n}:=\left\{R_{i, j}, L_{i, j}: i \neq j\right\}, \quad \mathrm{E}_{n}:=\{\{i, j\}: i \neq j\}$
Want to show $\Delta_{n}=\sum_{s \in S_{n}} 1-s$ satisfies $\Delta_{n}^{2}-\lambda_{n} \Delta_{n} \succeq 0$.

$$
\begin{aligned}
\Delta_{n} & =\sum_{\mathrm{e} \in \mathrm{E}_{n}} \Delta_{\mathrm{e}}, \\
\Delta_{n}^{2} & =\sum_{\mathrm{e}} \Delta_{\mathrm{e}}^{2}+\sum_{\mathrm{e} \sim \mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}}+\sum_{\mathrm{e} \perp \mathrm{f}} \Delta_{\mathrm{e}} \Delta_{\mathrm{f}} \\
& =: \mathbf{S q}_{n}+\quad \mathbf{\mathbf { A d j } _ { n }}+\mathbf{O} \mathbf{p}_{n} .
\end{aligned}
$$

- $\mathbf{S q}_{n}$ and $\mathbf{O p}$ ne positive, but $\mathbf{A d j}_{n}$ may not.

For $n>m$, let's see what we can tell about Δ_{n} knowing about Δ_{m} :

$$
\begin{aligned}
\sum_{\sigma \in \mathfrak{S}(n)} \sigma\left(\Delta_{m}\right) & =m(m-1) \cdot(n-2)!\cdot \Delta_{n} \\
\sum_{\sigma \in \mathfrak{S}(n)} \sigma\left(\mathbf{A d j}_{m}\right) & =m(m-1)(m-2) \cdot(n-3)!\cdot \mathbf{A d j}_{n} \\
\sum_{\sigma \in \mathfrak{S}(n)} \sigma\left(\mathbf{O} \mathbf{p}_{m}\right) & =m(m-1)(m-2)(m-3) \cdot(n-4)!\cdot \mathbf{O p}_{n}
\end{aligned}
$$

! $\mathbf{O} \mathbf{p}_{n}$ multiplies faster and overtakes $\mathbf{A d j}_{n}$.
Trial and error on the computer has confirmed

$$
\text { (®) } \quad \mathbf{A d j}_{5}+\alpha \mathbf{O} \mathbf{p}_{5}-\varepsilon \boldsymbol{\Delta}_{5} \succeq 0
$$

for $\alpha=2$ and $\varepsilon=0.13$. It follows that for $n \geq 2 \alpha+3$

$$
0 \preceq 60(n-3)!\left(\mathbf{A d j}_{n}+\frac{2 \alpha}{n-3} \mathbf{O} \mathbf{p}_{n}-\frac{n-2}{3} \varepsilon \Delta_{n}\right) \preceq 60(n-3)!\left(\Delta_{n}^{2}-\frac{n-2}{3} \varepsilon \Delta_{n}\right)
$$

Generalizing property (T) for $E L_{n}(\mathcal{R})$ for a rng \mathcal{R}

The computer taught us the ad hoc inequality

$$
\text { (〇) } \quad \mathbf{A d j}_{5}+\alpha \mathbf{O} \mathbf{p}_{5}-\varepsilon \boldsymbol{\Delta}_{5} \succeq 0
$$

is not only true but even easy to prove if $\alpha>0$ is large.

$$
\text { "rng" }=\text { "ring" }- \text { " } \mathrm{i} " . E L_{n}(\mathcal{R}) \rightarrow E L_{n}\left(\mathcal{R} / \mathcal{R}^{2}\right) \cong\left(\mathcal{R} / \mathcal{R}^{2}\right)^{\oplus n(n-1)} \text { abelian. }
$$

Theorem (O. 2022)

For any f.g. comm. rng \mathcal{R} generated by $R_{0} \Subset \mathcal{R}$ and for n large enough,

$$
\begin{aligned}
& \Delta:=\sum_{r \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r)\right)^{*}\left(1-e_{i j}(r)\right) \text { and } \\
& \Delta^{(2)}:=\sum_{r, s \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r s)\right)^{*}\left(1-e_{i j}(r s)\right)
\end{aligned}
$$

in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ satisfy $\Delta^{2} \geq \lambda \Delta^{(2)}$ in $C^{*}\left[E L_{n}(\mathcal{R})\right]$ for some $\lambda>0$.
$\Delta^{2} \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ and the proof is silicon-free. Instead it relies on Boca \& Zaharescu's work (2005) on the almost Mathieu operators in the rotation C^{*}-algebras \mathcal{A}_{θ} (aka noncomm. tori).

Corollary

$\exists n \exists \varepsilon>0$ s.t. Cayley $\left(S L_{n}(\mathbb{Z} / q \mathbb{Z}),\left\{e_{i j}(p): i \neq j\right\}\right), p \perp q$, are ε-expanders.
\square

Generalizing property (T) for $E L_{n}(\mathcal{R})$ for a rng \mathcal{R}

The computer taught us the ad hoc inequality

$$
\text { (ソ) } \quad \mathbf{A d j}_{5}+\alpha \mathbf{O p}_{5}-\varepsilon \boldsymbol{\Delta}_{5} \succeq 0
$$

is not only true but even easy to prove if $\alpha>0$ is large.
! "rng" $=$ "ring" - "i". $E L_{n}(\mathcal{R}) \rightarrow E L_{n}\left(\mathcal{R} / \mathcal{R}^{2}\right) \cong\left(\mathcal{R} / \mathcal{R}^{2}\right)^{\oplus n(n-1)}$ abelian.

Theorem (O. 2022)

For any f.g. comm. rng \mathcal{R} generated by $R_{0} \Subset \mathcal{R}$ and for n large enough,

$$
\begin{aligned}
& \Delta:=\sum_{r \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r)\right)^{*}\left(1-e_{i j}(r)\right) \quad \text { and } \\
& \Delta^{(2)}:=\sum_{r, s \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r s)\right)^{*}\left(1-e_{i j}(r s)\right)
\end{aligned}
$$

in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ satisfy $\Delta^{2} \geq \lambda \Delta^{(2)}$ in $\mathrm{C}^{*}\left[\mathrm{EL}_{n}(\mathcal{R})\right]$ for some $\lambda>0$.
$\Delta^{2} \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ and the proof is silicon-free. Instead it relies on Boca \& Zaharescu's work (2005) on the almost Mathieu operators in the rotation C^{*}-algebras \mathcal{A}_{θ} (aka noncomm. tori)
\square
Corollary
$\exists n \exists \varepsilon>0$ s.t. Cayley $\left(S L L_{n}(\mathbb{Z} / q \mathbb{Z}),\left\{e_{i j}(p): i \neq j\right\}\right), p \perp q$, are ε-expanders.

Generalizing property (T) for $E L_{n}(\mathcal{R})$ for a rng \mathcal{R}

The computer taught us the ad hoc inequality

$$
\text { (ソ) } \quad \mathbf{A d j}_{5}+\alpha \mathbf{O p}_{5}-\varepsilon \boldsymbol{\Delta}_{5} \succeq 0
$$

is not only true but even easy to prove if $\alpha>0$ is large.
! "rng" $=$ "ring" - " i ". $E \mathrm{~L}_{n}(\mathcal{R}) \rightarrow \mathrm{EL}_{n}\left(\mathcal{R} / \mathcal{R}^{2}\right) \cong\left(\mathcal{R} / \mathcal{R}^{2}\right)^{\oplus n(n-1)}$ abelian.

Theorem (O. 2022)

For any f.g. comm. rng \mathcal{R} generated by $R_{0} \Subset \mathcal{R}$ and for n large enough,

$$
\begin{aligned}
& \Delta:=\sum_{r \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r)\right)^{*}\left(1-e_{i j}(r)\right) \quad \text { and } \\
& \Delta^{(2)}:=\sum_{r, s \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r s)\right)^{*}\left(1-e_{i j}(r s)\right)
\end{aligned}
$$

in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ satisfy $\Delta^{2} \geq \lambda \Delta^{(2)}$ in $\mathrm{C}^{*}\left[E L_{n}(\mathcal{R})\right]$ for some $\lambda>0$.
$\Delta^{2} \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ and the proof is silicon-free. Instead it relies on Boca \& Zaharescu's work (2005) on the almost Mathieu operators in the rotation C^{*}-algebras \mathcal{A}_{θ} (aka noncomm. tori).
\square
$\exists n \exists \varepsilon>0$ s.t. Cayley $\left(\mathrm{SL}_{n}(\mathbb{Z} / q \mathbb{Z})\right.$ \square q, are ε-expanders.

Generalizing property (T) for $E L_{n}(\mathcal{R})$ for a rng \mathcal{R}

The computer taught us the ad hoc inequality

$$
\text { (ソ) } \mathbf{A d j}_{5}+\alpha \mathbf{O p}_{5}-\varepsilon \Delta_{5} \succeq 0
$$

is not only true but even easy to prove if $\alpha>0$ is large.
! "rng" $=$ "ring" - " i ". $E \mathrm{E}_{n}(\mathcal{R}) \rightarrow \mathrm{EL}_{n}\left(\mathcal{R} / \mathcal{R}^{2}\right) \cong\left(\mathcal{R} / \mathcal{R}^{2}\right)^{\oplus n(n-1)}$ abelian.

Theorem (O. 2022)

For any f.g. comm. rng \mathcal{R} generated by $R_{0} \Subset \mathcal{R}$ and for n large enough,

$$
\begin{aligned}
& \Delta:=\sum_{r \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r)\right)^{*}\left(1-e_{i j}(r)\right) \quad \text { and } \\
& \Delta^{(2)}:=\sum_{r, s \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r s)\right)^{*}\left(1-e_{i j}(r s)\right)
\end{aligned}
$$

in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ satisfy $\Delta^{2} \geq \lambda \Delta^{(2)}$ in $\mathrm{C}^{*}\left[E L_{n}(\mathcal{R})\right]$ for some $\lambda>0$.
$\Delta^{2} \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ and the proof is silicon-free. Instead it relies on Boca \& Zaharescu's work (2005) on the almost Mathieu operators in the rotation C^{*}-algebras \mathcal{A}_{θ} (aka noncomm. tori).

Corollary

$\exists n \exists \varepsilon>0$ s.t. Cayley $\left(\operatorname{SL}_{n}(\mathbb{Z} / q \mathbb{Z}),\left\{e_{i j}(p): i \neq j\right\}\right), p \perp q$, are ε-expanders.
! The groups $\left\{\mathrm{EL}_{n}(p \mathbb{Z}): p \in \mathbb{N}\right\}$ are not uniformly (T).

Generalizing property (T) for $E L_{n}(\mathcal{R})$ for a rng \mathcal{R}

The computer taught us the ad hoc inequality

$$
\text { (ソ) } \mathbf{A d j}_{5}+\alpha \mathbf{O p}_{5}-\varepsilon \Delta_{5} \succeq 0
$$

is not only true but even easy to prove if $\alpha>0$ is large.
! "rng" $=$ "ring" - " i ". $E \mathrm{E}_{n}(\mathcal{R}) \rightarrow \mathrm{EL}_{n}\left(\mathcal{R} / \mathcal{R}^{2}\right) \cong\left(\mathcal{R} / \mathcal{R}^{2}\right)^{\oplus n(n-1)}$ abelian.

Theorem (O. 2022)

For any f.g. comm. rng \mathcal{R} generated by $R_{0} \Subset \mathcal{R}$ and for n large enough,

$$
\begin{aligned}
& \Delta:=\sum_{r \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r)\right)^{*}\left(1-e_{i j}(r)\right) \quad \text { and } \\
& \Delta^{(2)}:=\sum_{r, s \in R_{0}} \sum_{i \neq j}\left(1-e_{i j}(r s)\right)^{*}\left(1-e_{i j}(r s)\right)
\end{aligned}
$$

in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ satisfy $\Delta^{2} \geq \lambda \Delta^{(2)}$ in $\mathrm{C}^{*}\left[E L_{n}(\mathcal{R})\right]$ for some $\lambda>0$.
$\Delta^{2} \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}\left[E L_{n}(\mathcal{R})\right]$ and the proof is silicon-free. Instead it relies on Boca \& Zaharescu's work (2005) on the almost Mathieu operators in the rotation C^{*}-algebras \mathcal{A}_{θ} (aka noncomm. tori).

Corollary

$\exists n \exists \varepsilon>0$ s.t. Cayley $\left(\mathrm{SL}_{n}(\mathbb{Z} / q \mathbb{Z}),\left\{e_{i j}(p): i \neq j\right\}\right), p \perp q$, are ε-expanders.
! The groups $\left\{\mathrm{EL}_{n}(p \mathbb{Z}): p \in \mathbb{N}\right\}$ are not uniformly (T).

