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C*-algebras are an esoteric subject —“the most abstract nonsense
that exists in mathematics,” in Casazza’s words. “Nobody outside the
area knows much about it.”

Quanta Magazine: ‘Outsiders’ Crack 50-Year-Old Math Problem.

http://www.quantamagazine.org/

computer-scientists-solve-kadison-singer-problem-20151124



Kazhdan’s property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., G = SLn(R), n ≥ 3) and

its lattice Γ (e.g., Γ = SLn(Z), n ≥ 3) have property (T).

 Γ is finitely generated and has finite abelianization.

Throughout this talk, Γ = 〈S〉 is a finitely generated group.

Definition (for discrete groups)

Γ has (T)
def⇐⇒ ∃κ = κ(Γ,S) > 0 s.t. ∀(π,H) unitary rep’n and ∀v ∈ H

d(v ,HΓ) ≤ κ−1 maxs∈S ‖v − π(s)v‖,
i.e., an almost invariant vector v is close to an invariant vector ProjHΓ(v).

Property (T) inherits to finite-index subgroups and quotient groups.

Z (or any infinite amenable group) does not have property (T).

∵ 1√
2k+1

1[−k,k] ∈ `2(Z) is asymp. Z-invariant, but `2(Z)Z = {0}.
 Any f.i. subgroup of a property (T) group has finite abelianization.

1 / 9



Kazhdan’s property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., G = SLn(R), n ≥ 3) and

its lattice Γ (e.g., Γ = SLn(Z), n ≥ 3) have property (T).

 Γ is finitely generated and has finite abelianization.

Throughout this talk, Γ = 〈S〉 is a finitely generated group.

Definition (for discrete groups)

Γ has (T)
def⇐⇒ ∃κ = κ(Γ,S) > 0 s.t. ∀(π,H) unitary rep’n and ∀v ∈ H

d(v ,HΓ) ≤ κ−1 maxs∈S ‖v − π(s)v‖,
i.e., an almost invariant vector v is close to an invariant vector ProjHΓ(v).

Property (T) inherits to finite-index subgroups and quotient groups.

Z (or any infinite amenable group) does not have property (T).

∵ 1√
2k+1

1[−k,k] ∈ `2(Z) is asymp. Z-invariant, but `2(Z)Z = {0}.
 Any f.i. subgroup of a property (T) group has finite abelianization.

1 / 9



Kazhdan’s property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., G = SLn(R), n ≥ 3) and

its lattice Γ (e.g., Γ = SLn(Z), n ≥ 3) have property (T).

 Γ is finitely generated and has finite abelianization.

Throughout this talk, Γ = 〈S〉 is a finitely generated group.

Definition (for discrete groups)

Γ has (T)
def⇐⇒ ∃κ = κ(Γ,S) > 0 s.t. ∀(π,H) unitary rep’n and ∀v ∈ H

d(v ,HΓ) ≤ κ−1 maxs∈S ‖v − π(s)v‖,
i.e., an almost invariant vector v is close to an invariant vector ProjHΓ(v).

Property (T) inherits to finite-index subgroups and quotient groups.

Z (or any infinite amenable group) does not have property (T).

∵ 1√
2k+1

1[−k,k] ∈ `2(Z) is asymp. Z-invariant, but `2(Z)Z = {0}.
 Any f.i. subgroup of a property (T) group has finite abelianization.

1 / 9



Kazhdan’s property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., G = SLn(R), n ≥ 3) and

its lattice Γ (e.g., Γ = SLn(Z), n ≥ 3) have property (T).

 Γ is finitely generated and has finite abelianization.

Throughout this talk, Γ = 〈S〉 is a finitely generated group.

Definition (for discrete groups)

Γ has (T)
def⇐⇒ ∃κ = κ(Γ,S) > 0 s.t. ∀(π,H) unitary rep’n and ∀v ∈ H

d(v ,HΓ) ≤ κ−1 maxs∈S ‖v − π(s)v‖,
i.e., an almost invariant vector v is close to an invariant vector ProjHΓ(v).

Property (T) inherits to finite-index subgroups and quotient groups.

Z (or any infinite amenable group) does not have property (T).

∵ 1√
2k+1

1[−k,k] ∈ `2(Z) is asymp. Z-invariant, but `2(Z)Z = {0}.
 Any f.i. subgroup of a property (T) group has finite abelianization.

1 / 9



Kazhdan’s property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., G = SLn(R), n ≥ 3) and

its lattice Γ (e.g., Γ = SLn(Z), n ≥ 3) have property (T).

 Γ is finitely generated and has finite abelianization.

Throughout this talk, Γ = 〈S〉 is a finitely generated group.

Definition (for discrete groups)

Γ has (T)
def⇐⇒ ∃κ = κ(Γ,S) > 0 s.t. ∀(π,H) unitary rep’n and ∀v ∈ H

d(v ,HΓ) ≤ κ−1 maxs∈S ‖v − π(s)v‖,
i.e., an almost invariant vector v is close to an invariant vector ProjHΓ(v).

Property (T) inherits to finite-index subgroups and quotient groups.

Z (or any infinite amenable group) does not have property (T).

∵ 1√
2k+1

1[−k,k] ∈ `2(Z) is asymp. Z-invariant, but `2(Z)Z = {0}.
 Any f.i. subgroup of a property (T) group has finite abelianization.

1 / 9



An application of property (T): Expander graphs

Definition

A finite connected graph X is an ε-expander if for ∀A ⊂ X (vertices)

|∂A| ≥ ε|A|(1− |A||X |).

For Nk(A) := {x ∈ X : d(x ,A) ≤ k},
|Nk(A)| ≥ (1 + ε

2 )k |A| until it reaches 1
2 |X |.

After that |Nk(A)c| decreases by a factor 1 + ε
2 .

Random walk on X has mixing time O(log |X |).

Want large ε-expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

Γ = 〈S〉 and N / Γ a finite index normal subgroup

 X = Cayley(Γ/N, S), where Edges = {{x , xs} : x ∈ Γ/N, s ∈ S},
is a κ(Γ, S)2-expander.

E.g., Γ = SL(3,Z), S = {I + Eij : i 6= j}, and Xq = SL(3,Z/qZ), q ∈ N.

S? What if Sp = {I + pEij : i 6= j} and Xp,q = SL(3,Z/qZ), q ⊥ p ?
2 / 9
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Some examples of property (T) groups
SLn(Z), n ≥ 3, (Kazhdan 1967), but not SL2(Z).

ELn(R) = 〈eij(r) : i 6= j , r ∈ R〉 ⊂ GLn(R), n ≥ 3,
where R finitely generated ring and eij(r) := In + rEij

(Shalom & Vaserstein, Ershov–Jaikin-Zapirain 2006–08).

Aut(Fn), n ≥ 4. (Kaluba–Nowak–O., K–Kielak–N., Nitsche 17–20).
Fn � Zn abelianization  Aut(Fn)� Aut(Zn) = GLn(Z).
 Aut(F2) does not have (T). Neither Aut(F3) (McCool 1989).

Q! The proof is heavily computer-assisted.

3
∧∧
]o∈3
∧∧
]o∈3
∧∧
]o∈ 3

∧∧
]o∈3
∧∧
]o∈3
∧∧
]o∈ 3

∧∧
]o∈3
∧∧
]o∈3
∧∧
]o∈

Product Replacement Algorithm (Celler et al. 95, Lubotzky–Pak 01)

Aut+(Fn) = 〈Ri ,j , Li ,j〉 ≤index 2 Aut(Fn), where Fn = 〈g1, . . . , gn〉 and

Ri ,j : (g1, . . . , gn) 7→ (g1, . . . , gi−1, gigj , gi+1, . . . , gn),

Li ,j : (g1, . . . , gn) 7→ (g1, . . . , gi−1, gjgi , gi+1 . . . , gn).

PRA is a practical algorithm to obtain “random” elements in a given finite

group Λ of rank < n via the PRA random walk

Aut+(Fn) y {(h1, . . . , hn) ∈ Λn : Λ = 〈h1, . . . , hn〉}.

3 / 9
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Noncommutative real algebraic geometry of property (T)

Hilbert’s 17th Pb:
(E. Artin 1927)

f ∈ R(x1, . . . , xd), f ≥ 0 on Rd

=⇒ f =
∑

i g
2
i for some g1, . . . , gk ∈ R(x1, . . . , xd).

R[Γ] real group algebra with the involution (
∑

t αtt)∗ =
∑

t αtt
−1.

Σ2R[Γ] := {
∑

i f
∗
i fi} = {

∑
x ,y Px ,yx

−1y : P ∈M+
Γ } positive cone

Here M+
Γ finitely supported positive semidefinite matrices.

B(H)+ := {A = A∗ : 〈Av , v〉 ≥ 0 ∀v ∈ H} = Σ2B(H) psd operators.

∀(π,H) unitary rep’n, π(
∑

i f
∗
i fi ) =

∑
i π(fi )

∗π(fi ) ≥ 0 in B(H).

C∗[Γ] the universal enveloping C∗-algebra of R[Γ].

Laplacian: For Γ = 〈S〉,
∆ :=

∑
s∈S(1− s)∗(1− s) = 2|S | −

∑
s∈S(s + s−1) ∈ Σ2R[Γ].

Then, 〈π(∆)v , v〉 =
∑

s∈S ‖v − π(s)v‖2 and

Γ has (T) ⇐⇒ ∃λ > 0 ∀(π,H) Sp(π(∆)) ⊂ {0} ∪ [λ,∞)

⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ≥ 0 in C∗[Γ]

 κ(Γ, S) ≥
√
λ/|S |

4 / 9
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Algebraic characterization of property (T)
Let Γ = 〈S〉.
R[Γ] real group algebra with the involution (

∑
t αtt)∗ =

∑
t αtt

−1.

Σ2R[Γ] := {
∑

i f
∗
i fi} = {

∑
x ,y Px ,yx

−1y : P ∈M+
Γ }

Here M+
Γ finitely supported positive semidefinite matrices.

∆ :=
∑

s∈S(1− s)∗(1− s) ∈ Σ2R[Γ].

C∗[Γ] the universal enveloping C∗-algebra of R[Γ].
Then,

Γ has (T) ⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ≥ 0 in C∗[Γ]

Theorem (O 2013)

Γ has (T) ⇐⇒ ∃λ > 0 such that ∆2 − λ∆ � 0 in R[Γ]

Stability (Netzer–Thom): It suffices if ∃λ > 0 ∃Θ ∈ Σ2R[Γ] such that

‖∆2 − λ∆−Θ‖1 � λ.
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Semidefinite Programming (SDP)
Γ has (T) ⇐⇒ ∃λ > 0 such that ∆2 − λ∆ ∈ Σ2R[Γ]

⇐⇒ ∃E b Γ ∃λ > 0 s.t. ∆2 − λ∆ ∈ {
∑

x ,y Px ,yx
−1y : P ∈M+

E }
By fixing a finite subset E b Γ, we arrive at the SDP:

maximize λ

subject to ∆2 − λ∆ =
∑

x ,y∈E Px ,yx
−1y , P ∈M+

E

Due to computer capacity limitation, we almost always take

E := Ball(2) = {e} ∪ S ∪ S2 = supp ∆ ∪ supp ∆2.

 Size of SDP: dimension |E |2 and constraints |E−1E | = |Ball(4)|.
Certification Procedure:
Suppose (λ0,P0) is a hypothetical solution obtained by a computer.
Find P0 ≈ QTQ (with Q1 = 0) and calculate with guaranteed accuracy

‖∆2 − λ0∆−
∑

x ,y (QTQ)x ,y (1− x)∗(1− y)‖1 � λ0.

Solving SDP is computationally hard, but certifying (T) is relatively easy.
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Results
Γ has (T) ⇐⇒ ∃E b Γ ∃λ > 0 s.t. ∆2 − λ∆ ∈ {

∑
x ,y Px ,yx

−1y : P ∈M+
E }

Results of SDP for E = Ball(2).

SLn(Z) with S = {eij : i 6= j}: λ3 > 0.27, λ4 > 1.3, λ5 > 2.6.

(Netzer–Thom 2014, Fujiwara–Kabaya 2017, Kaluba–Nowak 2017)

No response for SL6(Z).

For Aut+(F4), the size of SDP ≈ 10 000 000, beyond our computer’s
capacity. We exploited invariance under S(n) n (Z/2)⊕n y Aut+(Fn).

Aut+(F4):

No response.

Aut+(F5):

! f f ! YES!!! with λ > 1.2.

Theorem

Aut+(Fn) has property (T) for

n = 5 (Kaluba–Nowak–O. 2017)

n ≥ 6 (Kaluba–Kielak–Nowak 2018, by “stability” explained below)

n = 4 (Nitsche 2020, by a new SDP method)
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Revista Vea y Lea, January 1962

“But they (= computers) are useless.

They can only give you answers.”
Pablo Picasso, 1968.
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Property (T) for an infinite series (KKN 2018)
Γn := Aut+(Fn), Sn := {Ri ,j , Li ,j : i 6= j}, En := {{i , j} : i 6= j}
Want to show ∆n =

∑
s∈Sn 1− s satisfies ∆2

n − λn∆n � 0.
∆n =

∑
e∈En

∆e,

∆2
n =

∑
e ∆2

e +
∑

e∼f ∆e∆f +
∑

e⊥f ∆e∆f

=: Sqn + Adjn + Opn .

Sqn and Opn are positive, but Adjn may not.
For n > m, let’s see what we can tell about ∆n knowing about ∆m:∑

σ∈S(n) σ(∆m) = m(m − 1) · (n − 2)! ·∆n∑
σ∈S(n) σ(Adjm) = m(m − 1)(m − 2) · (n − 3)! · Adjn∑
σ∈S(n) σ(Opm) = m(m − 1)(m − 2)(m − 3) · (n − 4)! ·Opn

Q! Opn multiplies faster and overtakes Adjn.
Trial and error on the computer has confirmed

(♥) Adj5 +αOp5−ε∆5 � 0

for α = 2 and ε = 0.13. It follows that for n ≥ 2α + 3

0 � 60(n− 3)!
(
Adjn + 2α

n−3 Opn−n−2
3 ε∆n

)
� 60(n− 3)!

(
∆2

n− n−2
3 ε∆n

)
.
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(
Adjn + 2α

n−3 Opn−n−2
3 ε∆n

)
� 60(n− 3)!

(
∆2

n− n−2
3 ε∆n

)
.
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Property (T) for an infinite series (KKN 2018)
Γn := Aut+(Fn), Sn := {Ri ,j , Li ,j : i 6= j}, En := {{i , j} : i 6= j}
Want to show ∆n =

∑
s∈Sn 1− s satisfies ∆2

n − λn∆n � 0.
∆n =

∑
e∈En

∆e,

∆2
n =

∑
e ∆2

e +
∑

e∼f ∆e∆f +
∑

e⊥f ∆e∆f

=: Sqn + Adjn + Opn .
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Generalizing property (T) for ELn(R) for a rng R
The computer taught us the ad hoc inequality

(♥) Adj5 +αOp5−ε∆5 � 0

is not only true but even easy to prove if α > 0 is large.

Q! “rng”=“ring”−“i”. ELn(R)� ELn(R/R2) ∼= (R/R2)⊕n(n−1) abelian.

Theorem (O. 2022)

For any f.g. comm. rng R generated by R0 b R and for n large enough,

∆ :=
∑

r∈R0

∑
i 6=j(1− eij(r))∗(1− eij(r)) and

∆(2) :=
∑

r ,s∈R0

∑
i 6=j(1− eij(rs))∗(1− eij(rs))

in R[ELn(R)] satisfy ∆2 ≥ λ∆(2) in C∗[ELn(R)] for some λ > 0.

∆2 � λ∆(2) does not hold in R[ELn(R)] and the proof is silicon-free.
Instead it relies on Boca & Zaharescu’s work (2005) on the almost
Mathieu operators in the rotation C∗-algebras Aθ (aka noncomm. tori).

Corollary

∃n ∃ε > 0 s.t. Cayley(SLn(Z/qZ), {eij(p) : i 6= j}), p ⊥ q, are ε-expanders.

Q! The groups {ELn(pZ) : p ∈ N} are not uniformly (T). 9 / 9
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