Kazhdan's property (T) for $Aut(\mathbf{F}_n)$ and $EL_n(\mathcal{R})$

Narutaka OZAWA (小澤 登高)

de RIMS, Kyoto University

PRIMA 2022, Vancouver, December 07

Kazhdan's property (T) for $Aut(\mathbf{F}_n)$ and $EL_n(\mathcal{R})$

Narutaka OZAWA (小澤 登高)

de RIMS, Kyoto University

PRIMA 2022, Vancouver, December 07

C*-algebras are an esoteric subject — "the most abstract nonsense that exists in mathematics," in Casazza's words. "Nobody outside the area knows much about it."

Quanta Magazine: 'Outsiders' Crack 50-Year-Old Math Problem. http://www.quantamagazine.org/ computer-scientists-solve-kadison-singer-problem-20151124

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G = SL_n(\mathbb{R})$, $n \geq 3$) and its lattice Γ (e.g., $\Gamma = SL_n(\mathbb{Z})$, $n \geq 3$) have **property (T)**. $\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.

Throughout this talk, $\Gamma = \langle S \rangle$ is a finitely generated group.

Definition (for discrete groups)

$$\begin{split} \Gamma \text{ has } (\mathsf{T}) & \stackrel{\text{def}}{\longleftrightarrow} \exists \kappa = \kappa(\Gamma, S) > 0 \text{ s.t. } \forall (\pi, \mathcal{H}) \text{ unitary rep'n and } \forall v \in \mathcal{H} \\ d(v, \mathcal{H}^{\Gamma}) \leq \kappa^{-1} \max_{s \in S} \|v - \pi(s)v\|, \end{split}$$

i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}^{\Gamma}}(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite amenable group) does not have property (T).
 - $\therefore \frac{1}{\sqrt{2k+1}} \mathbb{1}_{[-k,k]} \in \ell^2(\mathbb{Z})$ is asymp. \mathbb{Z} -invariant, but $\ell^2(\mathbb{Z})^{\mathbb{Z}} = \{0\}$.

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G = SL_n(\mathbb{R})$, $n \geq 3$) and its lattice Γ (e.g., $\Gamma = SL_n(\mathbb{Z})$, $n \geq 3$) have **property (T)**.

 $\rightsquigarrow~\Gamma$ is finitely generated and has finite abelianization.

Throughout this talk, $\Gamma = \langle S \rangle$ is a finitely generated group.

Definition (for discrete groups)

$$\begin{split} \Gamma \text{ has } (\mathsf{T}) & \stackrel{\text{def}}{\Longleftrightarrow} \exists \kappa = \kappa(\Gamma, S) > 0 \text{ s.t. } \forall (\pi, \mathcal{H}) \text{ unitary rep'n and } \forall v \in \mathcal{H} \\ d(v, \mathcal{H}^{\Gamma}) \leq \kappa^{-1} \max_{s \in S} \|v - \pi(s)v\|, \end{split}$$

i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}^{\Gamma}}(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite amenable group) does not have property (T).
 - $\therefore \frac{1}{\sqrt{2k+1}} \mathbb{1}_{[-k,k]} \in \ell^2(\mathbb{Z})$ is asymp. \mathbb{Z} -invariant, but $\ell^2(\mathbb{Z})^{\mathbb{Z}} = \{0\}.$

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G = SL_n(\mathbb{R})$, $n \geq 3$) and its lattice Γ (e.g., $\Gamma = SL_n(\mathbb{Z})$, $n \geq 3$) have **property (T)**. $\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.

Throughout this talk, $\Gamma = \langle S \rangle$ is a finitely generated group.

Definition (for discrete groups)

$$\begin{split} \Gamma \text{ has } (\mathsf{T}) & \stackrel{\mathsf{def}}{\Longleftrightarrow} \exists \kappa = \kappa(\Gamma, S) > 0 \text{ s.t. } \forall (\pi, \mathcal{H}) \text{ unitary rep'n and } \forall v \in \mathcal{H} \\ d(v, \mathcal{H}^{\Gamma}) \leq \kappa^{-1} \max_{s \in S} \|v - \pi(s)v\|, \end{split}$$

i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}^{\Gamma}}(v)$.

• Property (T) inherits to finite-index subgroups and quotient groups.

- \mathbb{Z} (or any infinite amenable group) does not have property (T).
 - $\therefore \frac{1}{\sqrt{2k+1}} \mathbb{1}_{[-k,k]} \in \ell^2(\mathbb{Z})$ is asymp. \mathbb{Z} -invariant, but $\ell^2(\mathbb{Z})^{\mathbb{Z}} = \{0\}$.

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G = SL_n(\mathbb{R})$, $n \geq 3$) and its lattice Γ (e.g., $\Gamma = SL_n(\mathbb{Z})$, $n \geq 3$) have **property (T)**. $\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.

Throughout this talk, $\Gamma = \langle S \rangle$ is a finitely generated group.

Definition (for discrete groups)

$$\begin{split} \Gamma \text{ has } (\mathsf{T}) & \stackrel{\text{def}}{\longleftrightarrow} \exists \kappa = \kappa(\Gamma, S) > 0 \text{ s.t. } \forall (\pi, \mathcal{H}) \text{ unitary rep'n and } \forall v \in \mathcal{H} \\ d(v, \mathcal{H}^{\Gamma}) \leq \kappa^{-1} \max_{s \in S} \|v - \pi(s)v\|, \end{split}$$

i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}^{\Gamma}}(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups.
- $\bullet~\mathbb{Z}$ (or any infinite amenable group) does not have property (T).
 - $\because \frac{1}{\sqrt{2k+1}} \mathbb{1}_{[-k,k]} \in \ell^2(\mathbb{Z}) \text{ is asymp. } \mathbb{Z}\text{-invariant, but } \ell^2(\mathbb{Z})^{\mathbb{Z}} = \{0\}.$

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank ≥ 2 (e.g., $G = SL_n(\mathbb{R})$, $n \geq 3$) and its lattice Γ (e.g., $\Gamma = SL_n(\mathbb{Z})$, $n \geq 3$) have **property (T)**. $\rightsquigarrow \Gamma$ is finitely generated and has finite abelianization.

Throughout this talk, $\Gamma = \langle S \rangle$ is a finitely generated group.

Definition (for discrete groups)

$$\begin{split} \Gamma \text{ has } (\mathsf{T}) & \stackrel{\text{def}}{\Longleftrightarrow} \exists \kappa = \kappa(\Gamma, S) > 0 \text{ s.t. } \forall (\pi, \mathcal{H}) \text{ unitary rep'n and } \forall v \in \mathcal{H} \\ d(v, \mathcal{H}^{\Gamma}) \leq \kappa^{-1} \max_{s \in S} \|v - \pi(s)v\|, \end{split}$$

i.e., an almost invariant vector v is close to an invariant vector $\operatorname{Proj}_{\mathcal{H}^{\Gamma}}(v)$.

- Property (T) inherits to finite-index subgroups and quotient groups.
- \mathbb{Z} (or any infinite amenable group) does not have property (T).
 - $\because \frac{1}{\sqrt{2k+1}} \mathbb{1}_{[-k,k]} \in \ell^2(\mathbb{Z}) \text{ is asymp. } \mathbb{Z} \text{-invariant, but } \ell^2(\mathbb{Z})^{\mathbb{Z}} = \{0\}.$

Definition

A finite connected graph X is an ε -expander if for $\forall A \subset X$ (vertices) $|\partial A| \ge \varepsilon |A| (1 - \frac{|A|}{|X|}).$

- For $\mathcal{N}_k(A) := \{x \in X : d(x, A) \leq k\},\$ $|\mathcal{N}_k(A)| \geq (1 + \frac{\varepsilon}{2})^k |A|$ until it reaches $\frac{1}{2}|X|.$ After that $|\mathcal{N}_k(A)^c|$ decreases by a factor $1 + \frac{\varepsilon}{2}.$
- Random walk on X has mixing time $O(\log |X|)$.
- \bullet Want large $\varepsilon\text{-expanders}$ with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

 $\Gamma = \langle S \rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup

→ $X = \text{Cayley}(\Gamma/N, S)$, where Edges = {{x, xs} : $x \in \Gamma/N, s \in S$ }, is a $\kappa(\Gamma, S)^2$ -expander.

E.g., $\Gamma = SL(3,\mathbb{Z})$, $S = \{I + E_{ij} : i \neq j\}$, and $X_q = SL(3,\mathbb{Z}/q\mathbb{Z})$, $q \in \mathbb{N}$.

Definition

A finite connected graph X is an ε -expander if for $\forall A \subset X$ (vertices) $|\partial A| \ge \varepsilon |A| (1 - \frac{|A|}{|X|}).$

- For $\mathcal{N}_k(A) := \{x \in X : d(x, A) \le k\}$, $|\mathcal{N}_k(A)| \ge (1 + \frac{\varepsilon}{2})^k |A|$ until it reaches $\frac{1}{2}|X|$. After that $|\mathcal{N}_k(A)^c|$ decreases by a factor $1 + \frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large $\varepsilon\text{-expanders}$ with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

 $\Gamma = \langle S \rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup

·→ $X = \text{Cayley}(\Gamma/N, S)$, where Edges = {{x, xs} : $x \in \Gamma/N, s \in S$ }, is a $\kappa(\Gamma, S)^2$ -expander.

E.g., $\Gamma = SL(3,\mathbb{Z})$, $S = \{I + E_{ij} : i \neq j\}$, and $X_q = SL(3,\mathbb{Z}/q\mathbb{Z})$, $q \in \mathbb{N}$.

Definition

A finite connected graph X is an ε -expander if for $\forall A \subset X$ (vertices) $|\partial A| \ge \varepsilon |A| (1 - \frac{|A|}{|X|}).$

• For $\mathcal{N}_k(A) := \{x \in X : d(x, A) \le k\}$, $|\mathcal{N}_k(A)| \ge (1 + \frac{\varepsilon}{2})^k |A|$ until it reaches $\frac{1}{2}|X|$. After that $|\mathcal{N}_k(A)^c|$ decreases by a factor $1 + \frac{\varepsilon}{2}$.

- Random walk on X has mixing time $O(\log |X|)$.
- Want large $\varepsilon\text{-expanders}$ with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

 $\Gamma = \langle S \rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup

→ $X = \text{Cayley}(\Gamma/N, S)$, where Edges = {{x, xs} : $x \in \Gamma/N, s \in S$ }, is a $\kappa(\Gamma, S)^2$ -expander.

E.g., $\Gamma = SL(3,\mathbb{Z})$, $S = \{I + E_{ij} : i \neq j\}$, and $X_q = SL(3,\mathbb{Z}/q\mathbb{Z})$, $q \in \mathbb{N}$.

Definition

A finite connected graph X is an ε -expander if for $\forall A \subset X$ (vertices) $|\partial A| \ge \varepsilon |A| (1 - \frac{|A|}{|X|}).$

- For $\mathcal{N}_k(A) := \{x \in X : d(x, A) \le k\}$, $|\mathcal{N}_k(A)| \ge (1 + \frac{\varepsilon}{2})^k |A|$ until it reaches $\frac{1}{2}|X|$. After that $|\mathcal{N}_k(A)^c|$ decreases by a factor $1 + \frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large $\varepsilon\text{-expanders}$ with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

 $\Gamma = \langle S \rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup

→ $X = \text{Cayley}(\Gamma/N, S)$, where Edges = {{x, xs} : $x \in \Gamma/N, s \in S$ }, is a $\kappa(\Gamma, S)^2$ -expander.

E.g., $\Gamma = SL(3,\mathbb{Z})$, $S = \{I + E_{ij} : i \neq j\}$, and $X_q = SL(3,\mathbb{Z}/q\mathbb{Z})$, $q \in \mathbb{N}$.

Definition

A finite connected graph X is an ε -expander if for $\forall A \subset X$ (vertices) $|\partial A| \ge \varepsilon |A| (1 - \frac{|A|}{|X|}).$

- For $\mathcal{N}_k(A) := \{x \in X : d(x, A) \le k\}$, $|\mathcal{N}_k(A)| \ge (1 + \frac{\varepsilon}{2})^k |A|$ until it reaches $\frac{1}{2}|X|$. After that $|\mathcal{N}_k(A)^c|$ decreases by a factor $1 + \frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large ε -expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

 $\Gamma = \langle S \rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup

 $\rightsquigarrow X = \operatorname{Cayley}(\Gamma/N, S), \text{ where Edges} = \{\{x, xs\} : x \in \Gamma/N, s \in S\},$ is a $\kappa(\Gamma, S)^2$ -expander.

E.g., $\Gamma = SL(3,\mathbb{Z})$, $S = \{I + E_{ij} : i \neq j\}$, and $X_q = SL(3,\mathbb{Z}/q\mathbb{Z})$, $q \in \mathbb{N}$.

Definition

A finite connected graph X is an ε -expander if for $\forall A \subset X$ (vertices) $|\partial A| \ge \varepsilon |A| (1 - \frac{|A|}{|X|}).$

- For $\mathcal{N}_k(A) := \{x \in X : d(x, A) \le k\}$, $|\mathcal{N}_k(A)| \ge (1 + \frac{\varepsilon}{2})^k |A|$ until it reaches $\frac{1}{2}|X|$. After that $|\mathcal{N}_k(A)^c|$ decreases by a factor $1 + \frac{\varepsilon}{2}$.
- Random walk on X has mixing time $O(\log |X|)$.
- Want large ε -expanders with degree and ε fixed.

Explicit construction of expanders (Margulis 1973)

 $\Gamma = \langle S \rangle$ and $N \triangleleft \Gamma$ a finite index normal subgroup

·→ $X = \text{Cayley}(\Gamma/N, S)$, where Edges = {{x, xs} : $x \in \Gamma/N, s \in S$ }, is a $\kappa(\Gamma, S)^2$ -expander.

E.g., $\Gamma = SL(3,\mathbb{Z})$, $S = \{I + E_{ij} : i \neq j\}$, and $X_q = SL(3,\mathbb{Z}/q\mathbb{Z})$, $q \in \mathbb{N}$.

- $SL_n(\mathbb{Z})$, $n \ge 3$, (Kazhdan 1967), but not $SL_2(\mathbb{Z})$.
 - EL_n(R) = ⟨e_{ij}(r) : i ≠ j, r ∈ R⟩ ⊂ GL_n(R), n ≥ 3, where R finitely generated ring and e_{ij}(r) := I_n + rE_{ij} (Shalom & Vaserstein, Ershov–Jaikin-Zapirain 2006–08).
 - Aut(F_n), n ≥ 4. (Kaluba–Nowak–O., K–Kielak–N., Nitsche 17–20).
 F_n → Zⁿ abelianization → Aut(F_n) → Aut(Zⁿ) = GL_n(Z).
 → Aut(F₂) does not have (T). Neither Aut(F₃) (McCool 1989).
 ▲ The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky–Pak 01)

$$\begin{aligned} \operatorname{Aut}^+(\mathbf{F}_n) &= \langle R_{i,j}, L_{i,j} \rangle \leq_{\operatorname{index 2}} \operatorname{Aut}(\mathbf{F}_n), \text{ where } \mathbf{F}_n &= \langle g_1, \dots, g_n \rangle \text{ and} \\ R_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_i g_j, g_{i+1}, \dots, g_n), \\ L_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_j g_i, g_{i+1}, \dots, g_n). \end{aligned}$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank < n via the PRA random walk

- $SL_n(\mathbb{Z})$, $n \ge 3$, (Kazhdan 1967), but not $SL_2(\mathbb{Z})$.
 - EL_n(R) = ⟨e_{ij}(r) : i ≠ j, r ∈ R⟩ ⊂ GL_n(R), n ≥ 3, where R finitely generated ring and e_{ij}(r) := I_n + rE_{ij} (Shalom & Vaserstein, Ershov–Jaikin–Zapirain 2006–08).
 - Aut(F_n), n ≥ 4. (Kaluba–Nowak–O., K–Kielak–N., Nitsche 17–20).
 F_n → Zⁿ abelianization → Aut(F_n) → Aut(Zⁿ) = GL_n(Z).
 → Aut(F₂) does not have (T). Neither Aut(F₃) (McCool 1989).
 ▲ The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky–Pak 01)

$$\begin{aligned} \operatorname{Aut}^+(\mathbf{F}_n) &= \langle R_{i,j}, L_{i,j} \rangle \leq_{\operatorname{index 2}} \operatorname{Aut}(\mathbf{F}_n), \text{ where } \mathbf{F}_n &= \langle g_1, \dots, g_n \rangle \text{ and} \\ R_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_i g_j, g_{i+1}, \dots, g_n), \\ L_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_j g_i, g_{i+1}, \dots, g_n). \end{aligned}$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank < n via the PRA random walk

$$\operatorname{Aut}^+(\mathbf{F}_n) \frown \{(h_1,\ldots,h_n) \in \Lambda^n : \Lambda = \langle h_1,\ldots,h_n \rangle\}.$$

• $SL_n(\mathbb{Z})$, $n \ge 3$, (Kazhdan 1967), but not $SL_2(\mathbb{Z})$.

- EL_n(R) = ⟨e_{ij}(r) : i ≠ j, r ∈ R⟩ ⊂ GL_n(R), n ≥ 3, where R finitely generated ring and e_{ij}(r) := I_n + rE_{ij} (Shalom & Vaserstein, Ershov–Jaikin–Zapirain 2006–08).
- Aut(F_n), n ≥ 4. (Kaluba–Nowak–O., K–Kielak–N., Nitsche 17–20).
 F_n → Zⁿ abelianization → Aut(F_n) → Aut(Zⁿ) = GL_n(Z).
 → Aut(F₂) does not have (T). Neither Aut(F₃) (McCool 1989).
 The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky–Pak 01)

$$\begin{aligned} \operatorname{Aut}^+(\mathbf{F}_n) &= \langle R_{i,j}, L_{i,j} \rangle \leq_{\operatorname{index 2}} \operatorname{Aut}(\mathbf{F}_n), \text{ where } \mathbf{F}_n &= \langle g_1, \dots, g_n \rangle \text{ and} \\ R_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_i g_j, g_{i+1}, \dots, g_n), \\ L_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_j g_i, g_{i+1}, \dots, g_n). \end{aligned}$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank < n via the PRA random walk

• $SL_n(\mathbb{Z})$, $n \ge 3$, (Kazhdan 1967), but not $SL_2(\mathbb{Z})$.

- $\mathsf{EL}_n(\mathcal{R}) = \langle e_{ij}(r) : i \neq j, r \in \mathcal{R} \rangle \subset \mathsf{GL}_n(\mathcal{R}), n \geq 3$, where \mathcal{R} finitely generated ring and $e_{ij}(r) := I_n + rE_{ij}$ (Shalom & Vaserstein, Ershov–Jaikin-Zapirain 2006–08).
- Aut(F_n), n ≥ 4. (Kaluba–Nowak–O., K–Kielak–N., Nitsche 17–20).
 F_n → Zⁿ abelianization → Aut(F_n) → Aut(Zⁿ) = GL_n(Z).
 → Aut(F₂) does not have (T). Neither Aut(F₃) (McCool 1989).
 The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky–Pak 01)

$$\begin{aligned} \operatorname{Aut}^+(\mathbf{F}_n) &= \langle R_{i,j}, L_{i,j} \rangle \leq_{\operatorname{index 2}} \operatorname{Aut}(\mathbf{F}_n), \text{ where } \mathbf{F}_n &= \langle g_1, \dots, g_n \rangle \text{ and} \\ R_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_i g_j, g_{i+1}, \dots, g_n), \\ L_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_j g_i, g_{i+1}, \dots, g_n). \end{aligned}$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank < n via the PRA random walk

• $SL_n(\mathbb{Z})$, $n \ge 3$, (Kazhdan 1967), but not $SL_2(\mathbb{Z})$.

- EL_n(R) = ⟨e_{ij}(r) : i ≠ j, r ∈ R⟩ ⊂ GL_n(R), n ≥ 3, where R finitely generated ring and e_{ij}(r) := I_n + rE_{ij} (Shalom & Vaserstein, Ershov–Jaikin-Zapirain 2006–08).
- Aut(F_n), n ≥ 4. (Kaluba–Nowak–O., K–Kielak–N., Nitsche 17–20).
 F_n → Zⁿ abelianization → Aut(F_n) → Aut(Zⁿ) = GL_n(Z).
 → Aut(F₂) does not have (T). Neither Aut(F₃) (McCool 1989).
 The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky–Pak 01)

$$\begin{aligned} \mathsf{Aut}^+(\mathbf{F}_n) &= \langle R_{i,j}, L_{i,j} \rangle \leq_{\mathsf{index 2}} \mathsf{Aut}(\mathbf{F}_n), \text{ where } \mathbf{F}_n &= \langle g_1, \dots, g_n \rangle \text{ and} \\ R_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_i g_j, g_{i+1}, \dots, g_n), \\ L_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_j g_i, g_{i+1}, \dots, g_n). \end{aligned}$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank < n via the PRA random walk

• $SL_n(\mathbb{Z})$, $n \ge 3$, (Kazhdan 1967), but not $SL_2(\mathbb{Z})$.

- EL_n(R) = ⟨e_{ij}(r) : i ≠ j, r ∈ R⟩ ⊂ GL_n(R), n ≥ 3, where R finitely generated ring and e_{ij}(r) := I_n + rE_{ij} (Shalom & Vaserstein, Ershov–Jaikin-Zapirain 2006–08).
- Aut(F_n), n ≥ 4. (Kaluba–Nowak–O., K–Kielak–N., Nitsche 17–20).
 F_n → Zⁿ abelianization → Aut(F_n) → Aut(Zⁿ) = GL_n(Z).
 → Aut(F₂) does not have (T). Neither Aut(F₃) (McCool 1989).
 The proof is heavily computer-assisted.

Product Replacement Algorithm (Celler et al. 95, Lubotzky–Pak 01)

$$\begin{aligned} \operatorname{Aut}^+(\mathbf{F}_n) &= \langle R_{i,j}, L_{i,j} \rangle \leq_{\operatorname{index} 2} \operatorname{Aut}(\mathbf{F}_n), \text{ where } \mathbf{F}_n &= \langle g_1, \dots, g_n \rangle \text{ and} \\ R_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_i g_j, g_{i+1}, \dots, g_n), \\ L_{i,j} \colon (g_1, \dots, g_n) \mapsto (g_1, \dots, g_{i-1}, g_j g_i, g_{i+1}, \dots, g_n). \end{aligned}$$

PRA is a practical algorithm to obtain "random" elements in a given finite group Λ of rank < n via the PRA random walk

Hilbert's 17th Pb: $f \in \mathbb{R}(x_1, \dots, x_d)$, $f \ge 0$ on \mathbb{R}^d (E. Artin 1927) $\implies f = \sum_i g_i^2$ for some $g_1, \dots, g_k \in \mathbb{R}(x_1, \dots, x_d)$.

 $\mathbb{R}[\Gamma] \text{ real group algebra with the involution } (\sum_t \alpha_t t)^* = \sum_t \alpha_t t^{-1}.$ $\Sigma^2 \mathbb{R}[\Gamma] := \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+\} \text{ positive cone}$

Here \mathbb{M}_{Γ}^+ finitely supported positive semidefinite matrices.

- $\mathbb{B}(\mathcal{H})^+ := \{A = A^* : \langle Av, v \rangle \ge 0 \ \forall v \in \mathcal{H}\} = \Sigma^2 \mathbb{B}(\mathcal{H})$ psd operators.
- $\forall (\pi, \mathcal{H})$ unitary rep'n, $\pi(\sum_i f_i^* f_i) = \sum_i \pi(f_i)^* \pi(f_i) \ge 0$ in $\mathbb{B}(\mathcal{H})$.

• $C^*[\Gamma]$ the universal enveloping C*-algebra of $\mathbb{R}[\Gamma]$.

Laplacian: For $\Gamma = \langle S \rangle$,

 $\Delta := \sum_{s \in S} (1-s)^* (1-s) = 2|S| - \sum_{s \in S} (s+s^{-1}) \in \Sigma^2 \mathbb{R}[\Gamma].$ Then, $\langle \pi(\Delta)v, v \rangle = \sum_{s \in S} \|v - \pi(s)v\|^2$ and Γ has $(T) \iff \exists \lambda > 0 \quad \forall (\pi, \mathcal{H}) \quad \operatorname{Sp}(\pi(\Delta)) \subset \{0\} \cup [\lambda, \infty)$ $\iff \exists \lambda > 0 \quad \text{such that} \quad \Delta^2 - \lambda \Delta \ge 0 \quad \text{in } \mathbb{C}^*[\Gamma]$ $\rightsquigarrow \kappa(\Gamma, S) \ge \sqrt{\lambda/|S|}$

Hilbert's 17th Pb: $f \in \mathbb{R}(x_1, \ldots, x_d)$, $f \ge 0$ on \mathbb{R}^d (E. Artin 1927) $\implies f = \sum_i g_i^2$ for some $g_1, \ldots, g_k \in \mathbb{R}(x_1, \ldots, x_d)$.

$$\begin{split} \mathbb{R}[\Gamma] & \text{ real group algebra with the involution } (\sum_t \alpha_t t)^* = \sum_t \alpha_t t^{-1}.\\ \Sigma^2 \mathbb{R}[\Gamma] &:= \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+\} \text{ positive cone} \\ \text{Here } \mathbb{M}_{\Gamma}^+ \text{ finitely supported positive semidefinite matrices.} \end{split}$$

- $\mathbb{B}(\mathcal{H})^+ := \{A = A^* : \langle Av, v \rangle \ge 0 \ \forall v \in \mathcal{H}\} = \Sigma^2 \mathbb{B}(\mathcal{H})$ psd operators.
- $\forall (\pi, \mathcal{H})$ unitary rep'n, $\pi(\sum_i f_i^* f_i) = \sum_i \pi(f_i)^* \pi(f_i) \ge 0$ in $\mathbb{B}(\mathcal{H})$.

• $C^*[\Gamma]$ the universal enveloping C^* -algebra of $\mathbb{R}[\Gamma]$.

Laplacian: For $\Gamma = \langle S \rangle$,

$$\begin{split} \Delta &:= \sum_{s \in S} (1-s)^* (1-s) = 2|S| - \sum_{s \in S} (s+s^{-1}) \in \Sigma^2 \mathbb{R}[\Gamma].\\ \text{en, } \langle \pi(\Delta)v, v \rangle &= \sum_{s \in S} \|v - \pi(s)v\|^2 \text{ and}\\ \text{has } (\mathsf{T}) \iff \exists \lambda > 0 \quad \forall (\pi, \mathcal{H}) \quad \operatorname{Sp}(\pi(\Delta)) \subset \{0\} \cup [\lambda, \infty)\\ \iff \exists \lambda > 0 \quad \text{such that} \quad \begin{array}{l} \Delta^2 - \lambda \Delta \geq 0 \\ \sim \kappa(\Gamma, S) \geq \sqrt{\lambda/|S|} \end{array}$$

Hilbert's 17th Pb: $f \in \mathbb{R}(x_1, \dots, x_d)$, $f \ge 0$ on \mathbb{R}^d (E. Artin 1927) $\implies f = \sum_i g_i^2$ for some $g_1, \dots, g_k \in \mathbb{R}(x_1, \dots, x_d)$.

 $\mathbb{R}[\Gamma] \text{ real group algebra with the involution } (\sum_t \alpha_t t)^* = \sum_t \alpha_t t^{-1}.$ $\Sigma^2 \mathbb{R}[\Gamma] := \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+\} \text{ positive cone}$

Here \mathbb{M}^+_{Γ} finitely supported positive semidefinite matrices.

•
$$\mathbb{B}(\mathcal{H})^+ := \{A = A^* : \langle Av, v \rangle \ge 0 \ \forall v \in \mathcal{H}\} = \Sigma^2 \mathbb{B}(\mathcal{H})$$
 psd operators.

- $\forall (\pi, \mathcal{H})$ unitary rep'n, $\pi(\sum_i f_i^* f_i) = \sum_i \pi(f_i)^* \pi(f_i) \ge 0$ in $\mathbb{B}(\mathcal{H})$.
- $C^*[\Gamma]$ the universal enveloping C^* -algebra of $\mathbb{R}[\Gamma]$.

Laplacian: For $\Gamma = \langle S \rangle$,

 $\Delta := \sum_{s \in S} (1-s)^* (1-s) = 2|S| - \sum_{s \in S} (s+s^{-1}) \in \Sigma^2 \mathbb{R}[\Gamma].$

Then, $\langle \pi(\Delta)v, v \rangle = \sum_{s \in S} \|v - \pi(s)v\|^2$ and Γ has $(T) \iff \exists \lambda > 0 \quad \forall (\pi, \mathcal{H}) \quad \operatorname{Sp}(\pi(\Delta)) \subset \{0\} \cup [\lambda, \infty)$ $\iff \exists \lambda > 0 \quad \text{such that} \quad \Delta^2 - \lambda \Delta \ge 0 \quad \text{in } \mathbb{C}^*[\Gamma]$ $\rightsquigarrow \kappa(\Gamma, S) \ge \sqrt{\lambda/|S|}$

Hilbert's 17th Pb: $f \in \mathbb{R}(x_1, \dots, x_d)$, $f \ge 0$ on \mathbb{R}^d (E. Artin 1927) $\implies f = \sum_i g_i^2$ for some $g_1, \dots, g_k \in \mathbb{R}(x_1, \dots, x_d)$.

 $\mathbb{R}[\Gamma] \text{ real group algebra with the involution } (\sum_t \alpha_t t)^* = \sum_t \alpha_t t^{-1}.$ $\Sigma^2 \mathbb{R}[\Gamma] := \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+\} \text{ positive cone}$ Here \mathbb{M}_{Γ}^+ finitely supported positive comidefinite matrices

Here \mathbb{M}^+_{Γ} finitely supported positive semidefinite matrices.

•
$$\mathbb{B}(\mathcal{H})^+ := \{A = A^* : \langle Av, v \rangle \ge 0 \ \forall v \in \mathcal{H}\} = \Sigma^2 \mathbb{B}(\mathcal{H})$$
 psd operators.

• $\forall (\pi, \mathcal{H})$ unitary rep'n, $\pi(\sum_i f_i^* f_i) = \sum_i \pi(f_i)^* \pi(f_i) \ge 0$ in $\mathbb{B}(\mathcal{H})$.

• $C^*[\Gamma]$ the universal enveloping C^* -algebra of $\mathbb{R}[\Gamma]$.

Laplacian: For $\Gamma = \langle S \rangle$,

$$\Delta := \sum_{s \in S} (1-s)^* (1-s) = 2|S| - \sum_{s \in S} (s+s^{-1}) \in \Sigma^2 \mathbb{R}[\Gamma].$$

Then, $\langle \pi(\Delta)v, v \rangle = \sum_{s \in S} \|v - \pi(s)v\|^2$ and Γ has $(T) \iff \exists \lambda > 0 \quad \forall (\pi, \mathcal{H}) \quad \operatorname{Sp}(\pi(\Delta)) \subset \{0\} \cup [\lambda, \infty)$ $\iff \exists \lambda > 0 \quad \text{such that} \quad \Delta^2 - \lambda \Delta \ge 0 \quad \text{in } C^*[\Gamma]$ $t^2 - \lambda t \ge 0$

 $\rightsquigarrow \kappa(\Gamma, S) \geq \sqrt{\lambda/|S|}$

Algebraic characterization of property (T)

Let $\Gamma = \langle S \rangle$.

$$\begin{split} \mathbb{R}[\Gamma] \quad \text{real group algebra with the involution } (\sum_t \alpha_t t)^* &= \sum_t \alpha_t t^{-1}.\\ \Sigma^2 \mathbb{R}[\Gamma] &:= \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+\} \end{split}$$

Here \mathbb{M}_{Γ}^{+} finitely supported positive semidefinite matrices.

$$\Delta := \sum_{s \in S} (1-s)^* (1-s) \in \Sigma^2 \mathbb{R}[\Gamma].$$

 $C^*[\Gamma]$ the universal enveloping $C^*\mbox{-algebra}$ of $\mathbb{R}[\Gamma].$ Then,

 Γ has $(T) \iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \ge 0$ in $C^*[\Gamma]$

Theorem (O 2013

$$\Gamma$$
 has (T) $\iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \succeq 0$ in $\mathbb{R}[\Gamma$

$$\begin{split} \textbf{Stability} \ (\text{Netzer-Thom}): \ \text{It suffices if } \exists \lambda > 0 \ \exists \Theta \in \Sigma^2 \mathbb{R}[\Gamma] \ \text{such that} \\ \|\Delta^2 - \lambda \Delta - \Theta\|_1 \ll \lambda. \end{split}$$

Algebraic characterization of property (T)

Let $\Gamma = \langle S \rangle$.

$$\begin{split} \mathbb{R}[\Gamma] \quad \text{real group algebra with the involution } (\sum_t \alpha_t t)^* &= \sum_t \alpha_t t^{-1}.\\ \Sigma^2 \mathbb{R}[\Gamma] &:= \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+\} \end{split}$$

Here \mathbb{M}^+_{Γ} finitely supported positive semidefinite matrices.

$$\Delta := \sum_{s \in S} (1-s)^* (1-s) \in \Sigma^2 \mathbb{R}[\Gamma].$$

 $C^*[\Gamma]$ the universal enveloping $C^*\mbox{-algebra}$ of $\mathbb{R}[\Gamma].$ Then,

$$\Gamma$$
 has (T) $\iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \ge 0$ in $C^*[\Gamma]$

Theorem (O 2013)

 Γ has (T) $\iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \succeq 0$ in $\mathbb{R}[\Gamma]$

$$\begin{split} \textbf{Stability} \ (\text{Netzer-Thom}): \ \text{It suffices if } \exists \lambda > 0 \ \exists \Theta \in \Sigma^2 \mathbb{R}[\Gamma] \ \text{such that} \\ \|\Delta^2 - \lambda \Delta - \Theta\|_1 \ll \lambda. \end{split}$$

Algebraic characterization of property (T)

Let $\Gamma = \langle S \rangle$.

$$\begin{split} \mathbb{R}[\Gamma] \quad \text{real group algebra with the involution } (\sum_t \alpha_t t)^* &= \sum_t \alpha_t t^{-1}.\\ \Sigma^2 \mathbb{R}[\Gamma] &:= \{\sum_i f_i^* f_i\} = \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_{\Gamma}^+\} \end{split}$$

Here \mathbb{M}^+_{Γ} finitely supported positive semidefinite matrices.

$$\Delta := \sum_{s \in S} (1-s)^* (1-s) \in \Sigma^2 \mathbb{R}[\Gamma].$$

 $C^*[\Gamma]$ the universal enveloping $C^*\mbox{-algebra}$ of $\mathbb{R}[\Gamma].$ Then,

$$\Gamma$$
 has $(\mathsf{T}) \iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \ge 0$ in $\mathrm{C}^*[\Gamma]$

Theorem (O 2013)

$$\Gamma$$
 has (T) $\iff \exists \lambda > 0$ such that $\Delta^2 - \lambda \Delta \succeq 0$ in $\mathbb{R}[\Gamma]$

$$\begin{split} \textbf{Stability (Netzer-Thom): It suffices if } \exists \lambda > 0 \ \exists \Theta \in \Sigma^2 \mathbb{R}[\Gamma] \ \text{such that} \\ \|\Delta^2 - \lambda \Delta - \Theta\|_1 \ll \lambda. \end{split}$$

 $\begin{array}{l} \Gamma \text{ has } (\mathsf{T}) \Longleftrightarrow \exists \lambda > 0 \text{ such that } \underline{\Delta^2 - \lambda \Delta \in \Sigma^2 \mathbb{R}[\Gamma]} \\ \Leftrightarrow \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_E^+\} \end{array}$

By fixing a finite subset $E \Subset \Gamma$, we arrive at the SDP:

maximize λ subject to $\Delta^2 - \lambda \Delta = \sum_{x,y \in E} P_{x,y} x^{-1} y$, $P \in \mathbb{M}_E^+$

• Due to computer capacity limitation, we almost always take

 $E := \mathsf{Ball}(2) = \{e\} \cup S \cup S^2 = \mathsf{supp}\,\Delta \cup \mathsf{supp}\,\Delta^2.$

→ Size of SDP: dimension $|E|^2$ and constraints $|E^{-1}E| = |Ball(4)|$. Certification Procedure:

Suppose (λ_0, P_0) is a hypothetical solution obtained by a computer. Find $P_0 \approx Q^T Q$ (with $Q\mathbf{1} = 0$) and calculate **with guaranteed accuracy**

$$\|\Delta^2 - \lambda_0 \Delta - \sum_{x,y} (Q^T Q)_{x,y} (1-x)^* (1-y)\|_1 \ll \lambda_0.$$

$$\begin{array}{l} \Gamma \text{ has } (\mathsf{T}) \Longleftrightarrow \exists \lambda > 0 \text{ such that } \overbrace{\Delta^2 - \lambda \Delta \in \Sigma^2 \mathbb{R}[\Gamma]} \\ \Leftrightarrow \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_E^+ \} \end{array}$$

By fixing a finite subset $E \Subset \Gamma$, we arrive at the SDP:

maximize
$$\lambda$$
 subject to $\Delta^2 - \lambda \Delta = \sum_{x,y \in E} P_{x,y} x^{-1} y$, $P \in \mathbb{M}_E^+$

 Due to computer capacity limitation, we almost always take
 E := Ball(2) = {e} ∪ S ∪ S² = supp Δ ∪ supp Δ².
 → Size of SDP: dimension |E|² and constraints |E⁻¹E| = |Ball(4)|.
 Certification Procedure:
 Suppose (λ₀, P₀) is a hypothetical solution obtained by a computer.

Find $P_0 \approx Q^T Q$ (with $Q\mathbf{1} = 0$) and calculate **with guaranteed accuracy** $\|\Delta^2 - \lambda_0 \Delta - \sum (Q^T Q) - (1 - \chi)^* (1 - \chi)\|_{1} \ll \lambda_0$

$$\begin{array}{l} \Gamma \text{ has } (\mathsf{T}) \Longleftrightarrow \exists \lambda > 0 \text{ such that } \Delta^2 - \lambda \Delta \in \Sigma^2 \mathbb{R}[\Gamma] \\ \Leftrightarrow \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_E^+ \} \end{array}$$

By fixing a finite subset $E \Subset \Gamma$, we arrive at the SDP:

maximize
$$\lambda$$
 subject to $\Delta^2 - \lambda \Delta = \sum_{x,y \in E} P_{x,y} x^{-1} y$, $P \in \mathbb{M}_E^+$

Due to computer capacity limitation, we almost always take
 E := Ball(2) = {e} ∪ S ∪ S² = supp Δ ∪ supp Δ².

→ Size of SDP: dimension $|E|^2$ and constraints $|E^{-1}E| = |Ball(4)|$. Certification Procedure:

Suppose (λ_0, P_0) is a hypothetical solution obtained by a computer. Find $P_0 \approx Q^T Q$ (with $Q\mathbf{1} = 0$) and calculate **with guaranteed accuracy** $\|\Delta^2 - \lambda_0 \Delta - \sum_{x,y} (Q^T Q)_{x,y} (1-x)^* (1-y)\|_1 \ll \lambda_0.$

$$\begin{array}{l} \Gamma \text{ has } (\mathsf{T}) \Longleftrightarrow \exists \lambda > 0 \text{ such that } \underline{\Delta^2 - \lambda \Delta \in \Sigma^2 \mathbb{R}[\Gamma]} \\ \Leftrightarrow \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_F^+ \} \end{array}$$

By fixing a finite subset $E \Subset \Gamma$, we arrive at the SDP:

maximize
$$\lambda$$

subject to $\Delta^2 - \lambda \Delta = \sum_{x,y \in E} P_{x,y} x^{-1} y$, $P \in \mathbb{M}_E^+$

Due to computer capacity limitation, we almost always take
 E := Ball(2) = {e} ∪ S ∪ S² = supp Δ ∪ supp Δ².

 \rightsquigarrow Size of SDP: dimension $|E|^2$ and constraints $|E^{-1}E| = |Ball(4)|$.

Certification Procedure:

Suppose (λ_0, P_0) is a hypothetical solution obtained by a computer. Find $P_0 \approx Q^T Q$ (with $Q\mathbf{1} = 0$) and calculate **with guaranteed accuracy** $\|\Delta^2 - \lambda_0 \Delta - \sum_{x,y} (Q^T Q)_{x,y} (1-x)^* (1-y)\|_1 \ll \lambda_0.$

$\label{eq:Gamma-formula} \Gamma \text{ has } (\mathsf{T}) \Longleftrightarrow \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_E^+\}$

Results of SDP for E = Ball(2).

- SL_n(ℤ) with S = {e_{ij} : i ≠ j}: λ₃ > 0.27, λ₄ > 1.3, λ₅ > 2.6. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $SL_6(\mathbb{Z})$.

For Aut⁺(**F**₄), the size of SDP \approx 10 000 000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \curvearrowright \operatorname{Aut}^+(\mathbf{F}_n)$.

- Aut⁺(\mathbf{F}_4):
- $Aut^+(\mathbf{F}_5)$:

- Aut⁺(\mathbf{F}_n) has property (T) for
- *n* = 5 (Kaluba–Nowak–O. 2017)
- $n \ge 6$ (Kaluba–Kielak–Nowak 2018, by "stability" explained below)
- n = 4 (Nitsche 2020, by a new SDP method)

Γ has (T) $\iff \exists E \Subset \Gamma \exists \lambda > 0$ s.t. $\Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1}y : P \in \mathbb{M}_E^+\}$

Results of SDP for E = Ball(2).

- $SL_n(\mathbb{Z})$ with $S = \{e_{ij} : i \neq j\}$: $\lambda_3 > 0.27$, $\lambda_4 > 1.3$, $\lambda_5 > 2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $SL_6(\mathbb{Z})$.
- For Aut⁺(**F**₄), the size of SDP \approx 10 000 000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \curvearrowright \operatorname{Aut}^+(\mathbf{F}_n)$.
- Aut⁺(\mathbf{F}_4):
- Aut⁺(\mathbf{F}_5):

- Aut⁺(\mathbf{F}_n) has property (T) for
- *n* = 5 (Kaluba–Nowak–O. 2017)
- $n \ge 6$ (Kaluba–Kielak–Nowak 2018, by "stability" explained below)
- n = 4 (Nitsche 2020, by a new SDP method)

$\label{eq:Gamma-star} \Gamma \text{ has } (\mathsf{T}) \Longleftrightarrow \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1} y : P \in \mathbb{M}_E^+\}$

Results of SDP for E = Ball(2).

- $SL_n(\mathbb{Z})$ with $S = \{e_{ij} : i \neq j\}$: $\lambda_3 > 0.27$, $\lambda_4 > 1.3$, $\lambda_5 > 2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $SL_6(\mathbb{Z})$.

For Aut⁺(**F**₄), the size of SDP \approx 10 000 000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \curvearrowright \operatorname{Aut}^+(\mathbf{F}_n)$.

- Aut⁺(\mathbf{F}_4):
- Aut⁺(\mathbf{F}_5):

- Aut⁺(\mathbf{F}_n) has property (T) for
- *n* = 5 (Kaluba–Nowak–O. 2017)
- $n \ge 6$ (Kaluba–Kielak–Nowak 2018, by "stability" explained below)
- n = 4 (Nitsche 2020, by a new SDP method)

Γ has (T) $\iff \exists E \Subset \Gamma \exists \lambda > 0$ s.t. $\Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1}y : P \in \mathbb{M}_E^+\}$

Results of SDP for E = Ball(2).

- $SL_n(\mathbb{Z})$ with $S = \{e_{ij} : i \neq j\}$: $\lambda_3 > 0.27$, $\lambda_4 > 1.3$, $\lambda_5 > 2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $SL_6(\mathbb{Z})$.

For Aut⁺(**F**₄), the size of SDP \approx 10 000 000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \curvearrowright \operatorname{Aut}^+(\mathbf{F}_n)$. • Aut⁺(**F**₄):

• Aut⁺(\mathbf{F}_5):

Theorem

Aut⁺(\mathbf{F}_n) has property (T) for

- *n* = 5 (Kaluba–Nowak–O. 2017)
- $n \ge 6$ (Kaluba–Kielak–Nowak 2018, by "stability" explained below)
- n = 4 (Nitsche 2020, by a new SDP method)

Γ has (T) $\iff \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1}y : P \in \mathbb{M}_E^+\}$

Results of SDP for E = Ball(2).

 SL_n(ℤ) with S = {e_{ij} : i ≠ j}: λ₃ > 0.27, λ₄ > 1.3, λ₅ > 2.6. (Netzer–Thom 2014, Fujiwara–Kabaya 2017, Kaluba–Nowak 2017)
 No response for SL₆(ℤ).

For Aut⁺(**F**₄), the size of SDP \approx 10 000 000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \curvearrowright \operatorname{Aut}^+(\mathbf{F}_n)$. • Aut⁺(**F**₄): $\cong \cong \cong$ No response.

• Aut⁺(\mathbf{F}_5):

- Aut⁺(\mathbf{F}_n) has property (T) for
- *n* = 5 (Kaluba–Nowak–O. 2017)
- $n \ge 6$ (Kaluba–Kielak–Nowak 2018, by "stability" explained below)
- n = 4 (Nitsche 2020, by a new SDP method)

Γ has (T) $\iff \exists E \Subset \Gamma \exists \lambda > 0$ s.t. $\Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1}y : P \in \mathbb{M}_E^+\}$

Results of SDP for E = Ball(2).

- $SL_n(\mathbb{Z})$ with $S = \{e_{ij} : i \neq j\}$: $\lambda_3 > 0.27$, $\lambda_4 > 1.3$, $\lambda_5 > 2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $SL_6(\mathbb{Z})$.

For Aut⁺(**F**₄), the size of SDP $\approx 10\ 000\ 000$, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \curvearrowright \operatorname{Aut}^+(\mathbf{F}_n)$. • Aut⁺(**F**₄): $\textcircled{\Box} \boxdot$ No response.

• $Aut^+(\mathbf{F}_5)$:

- Aut⁺(\mathbf{F}_n) has property (T) for
- *n* = 5 (Kaluba–Nowak–O. 2017)
- $n \ge 6$ (Kaluba–Kielak–Nowak 2018, by "stability" explained below)
- n = 4 (Nitsche 2020, by a new SDP method)

Γ has (T) $\iff \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1}y : P \in \mathbb{M}_E^+\}$

Results of SDP for E = Ball(2).

- $SL_n(\mathbb{Z})$ with $S = \{e_{ij} : i \neq j\}$: $\lambda_3 > 0.27$, $\lambda_4 > 1.3$, $\lambda_5 > 2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $SL_6(\mathbb{Z})$.

For Aut⁺(**F**₄), the size of SDP \approx 10 000 000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \curvearrowright \operatorname{Aut^+}(\mathbf{F}_n)$. • Aut⁺(**F**₄): $\textcircled{\circlet} \boxdot$ No response.

• Aut⁺(\mathbf{F}_5): !C \land C \land VES!!! with $\lambda > 1.2$.

- Aut⁺(\mathbf{F}_n) has property (T) for
- *n* = 5 (Kaluba–Nowak–O. 2017)
- $n \ge 6$ (Kaluba–Kielak–Nowak 2018, by "stability" explained below)
- n = 4 (Nitsche 2020, by a new SDP method)

Γ has (T) $\iff \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1}y : P \in \mathbb{M}_E^+\}$

Results of SDP for E = Ball(2).

- $SL_n(\mathbb{Z})$ with $S = \{e_{ij} : i \neq j\}$: $\lambda_3 > 0.27$, $\lambda_4 > 1.3$, $\lambda_5 > 2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $SL_6(\mathbb{Z})$.

For Aut⁺(**F**₄), the size of SDP \approx 10 000 000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \curvearrowright \operatorname{Aut^+}(\mathbf{F}_n)$.

- Aut⁺(\mathbf{F}_4): (\mathbf{F}_4) : No response.
- $\operatorname{Aut}^+(\mathbf{F}_5)$: $! \odot \land \odot \land \odot !$ **YES!!!** with $\lambda > 1.2$.

- Aut⁺(\mathbf{F}_n) has property (T) for
- *n* = 5 (Kaluba–Nowak–O. 2017)
- $n \ge 6$ (Kaluba–Kielak–Nowak 2018, by "stability" explained below)
- n = 4 (Nitsche 2020, by a new SDP method)

Revista Vea y Lea, January 1962

"But they (= computers) are useless. They can only give you answers." Pablo Picasso, 1968.

Γ has (T) $\iff \exists E \Subset \Gamma \ \exists \lambda > 0 \text{ s.t. } \Delta^2 - \lambda \Delta \in \{\sum_{x,y} P_{x,y} x^{-1}y : P \in \mathbb{M}_E^+\}$

Results of SDP for E = Ball(2).

- $SL_n(\mathbb{Z})$ with $S = \{e_{ij} : i \neq j\}$: $\lambda_3 > 0.27$, $\lambda_4 > 1.3$, $\lambda_5 > 2.6$. (Netzer-Thom 2014, Fujiwara-Kabaya 2017, Kaluba-Nowak 2017)
- No response for $SL_6(\mathbb{Z})$.

For Aut⁺(**F**₄), the size of SDP \approx 10 000 000, beyond our computer's capacity. We exploited invariance under $\mathfrak{S}(n) \ltimes (\mathbb{Z}/2)^{\oplus n} \curvearrowright \operatorname{Aut}^+(\mathbf{F}_n)$. • Aut⁺(**F**₄): = (=) (=) (=) No response.

• $\operatorname{Aut}^+(\mathbf{F}_5)$: $! \odot \land \odot \land \odot !$ **YES!!!** with $\lambda > 1.2$.

- Aut⁺(\mathbf{F}_n) has property (T) for
- *n* = 5 (Kaluba–Nowak–O. 2017)
- $n \ge 6$ (Kaluba–Kielak–Nowak 2018, by "stability" explained below)
- n = 4 (Nitsche 2020, by a new SDP method)

$$\begin{split} \Gamma_n &:= \operatorname{Aut}^+(\mathbf{F}_n), \quad S_n &:= \{R_{i,j}, \ L_{i,j} : i \neq j\}, \quad \operatorname{E}_n := \{\{i,j\} : i \neq j\} \\ \text{Want to show } \Delta_n &= \sum_{s \in S_n} 1 - s \text{ satisfies } \underbrace{\Delta_n^2 - \lambda_n \Delta_n \succeq 0}_{\Delta_n = \sum_{e \in \operatorname{E}_n} \Delta_e}, \\ \Delta_n^2 &= \sum_e \Delta_e^2 + \sum_{e \sim f} \Delta_e \Delta_f + \sum_{e \perp f} \Delta_e \Delta_f \\ &=: \quad \mathbf{Sq}_n \quad + \quad \mathbf{Adj}_n \quad + \quad \mathbf{Op}_n \,. \end{split}$$

 Sq_n and Op_n are positive, but Adj_n may not.
 For n > m, let's see what we can tell about Δ_n knowing about Δ_m: ∑_{σ∈G(n)} σ(Δ_m) = m(m − 1) · (n − 2)! · Δ_n ∑_{σ∈G(n)} σ(Adj_m) = m(m − 1)(m − 2) · (n − 3)! · Adj_n ∑_{σ∈G(n)} σ(Op_m) = m(m − 1)(m − 2)(m − 3) · (n − 4)! · Op_n
 Op_n multiplies faster and overtakes Adj_n.
 Trial and error on the computer has confirmed

$$(\heartsuit) \quad \operatorname{Adj}_5 + \alpha \operatorname{Op}_5 - \varepsilon \Delta_5 \succeq 0$$

for $\alpha = 2$ and $\varepsilon = 0.13$. It follows that for $n \ge 2\alpha + 3$ $0 \le 60(n-3)! \left(\operatorname{Adj}_n + \frac{2\alpha}{n-3} \operatorname{Op}_n - \frac{n-2}{3} \varepsilon \Delta_n \right) \le 60(n-3)! \left(\Delta_n^2 - \frac{n-2}{3} \varepsilon \Delta_n \right).$

$$\begin{split} \Gamma_n &:= \operatorname{Aut}^+(\mathbf{F}_n), \quad S_n := \{R_{i,j}, \ L_{i,j} : i \neq j\}, \quad \operatorname{E}_n := \{\{i,j\} : i \neq j\} \\ \text{Want to show } \Delta_n &= \sum_{s \in S_n} 1 - s \text{ satisfies } \Delta_n^2 - \lambda_n \Delta_n \succeq 0. \\ \Delta_n &= \sum_{e \in \operatorname{E}_n} \Delta_e, \\ \Delta_n^2 &= \sum_e \Delta_e^2 + \sum_{e \sim f} \Delta_e \Delta_f + \sum_{e \perp f} \Delta_e \Delta_f \\ &=: \quad \mathbf{Sq}_n \ + \quad \mathbf{Adj}_n \ + \quad \mathbf{Op}_n. \end{split}$$

• Sq_n and Op_n are positive, but Adj_n may not.

For n > m, let's see what we can tell about Δ_n knowing about Δ_m : $\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\Delta_m) = m(m-1) \cdot (n-2)! \cdot \Delta_n$ $\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\mathbf{Adj}_m) = m(m-1)(m-2) \cdot (n-3)! \cdot \mathbf{Adj}_n$ $\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\mathbf{Op}_m) = m(m-1)(m-2)(m-3) \cdot (n-4)! \cdot \mathbf{Op}_n$ \mathbf{Adj}_n Trial and error on the computer has confirmed

$$\heartsuit) \quad \mathbf{Adj}_5 + \alpha \, \mathbf{Op}_5 - \varepsilon \Delta_5 \succeq \mathbf{0}$$

for $\alpha = 2$ and $\varepsilon = 0.13$. It follows that for $n \ge 2\alpha + 3$ $0 \le 60(n-3)! \left(\operatorname{Adj}_n + \frac{2\alpha}{n-3} \operatorname{Op}_n - \frac{n-2}{3} \varepsilon \Delta_n \right) \le 60(n-3)! \left(\Delta_n^2 - \frac{n-2}{3} \varepsilon \Delta_n \right).$

$$\begin{split} \Gamma_n &:= \operatorname{Aut}^+(\mathbf{F}_n), \quad S_n &:= \{R_{i,j}, \ L_{i,j} : i \neq j\}, \quad \operatorname{E}_n := \{\{i,j\} : i \neq j\} \\ \text{Want to show } \Delta_n &= \sum_{s \in S_n} 1 - s \text{ satisfies } \underbrace{\Delta_n^2 - \lambda_n \Delta_n \succeq 0}_{\Delta_n = \sum_{e \in \operatorname{E}_n} \Delta_e,} \\ \Delta_n^2 &= \sum_e \Delta_e^2 + \sum_{e \sim \mathrm{f}} \Delta_e \Delta_\mathrm{f} + \sum_{e \perp \mathrm{f}} \Delta_e \Delta_\mathrm{f} \\ &=: \quad \mathbf{Sq}_n \ + \ \mathbf{Adj}_n \ + \ \mathbf{Op}_n \,. \end{split}$$

• Sq_n and Op_n are positive, but Adj_n may not.

For n > m, let's see what we can tell about Δ_n knowing about Δ_m :

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\Delta_m) = m(m-1) \cdot (n-2)! \cdot \Delta_n$$

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\operatorname{Adj}_m) = m(m-1)(m-2) \cdot (n-3)! \cdot \operatorname{Adj}_n$$

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\operatorname{Op}_m) = m(m-1)(m-2)(m-3) \cdot (n-4)! \cdot \operatorname{Op}_n$$

$$\bigwedge \operatorname{Op}_n \text{ multiplies faster and overtakes } \operatorname{Adj}_n.$$

Trial and error on the computer has confirmed

$$(\heartsuit) \quad \mathbf{Adj}_5 + \alpha \, \mathbf{Op}_5 - \varepsilon \Delta_5 \succeq \mathbf{0}$$

for $\alpha = 2$ and $\varepsilon = 0.13$. It follows that for $n \ge 2\alpha + 3$ $0 \le 60(n-3)! \left(\operatorname{Adj}_n + \frac{2\alpha}{n-3} \operatorname{Op}_n - \frac{n-2}{3} \varepsilon \Delta_n \right) \le 60(n-3)! \left(\Delta_n^2 - \frac{n-2}{3} \varepsilon \Delta_n \right).$

$$\begin{split} &\Gamma_n := \operatorname{Aut}^+(\mathbf{F}_n), \quad S_n := \{R_{i,j}, L_{i,j} : i \neq j\}, \quad \operatorname{E}_n := \{\{i,j\} : i \neq j\} \\ &\operatorname{Want} \text{ to show } \Delta_n = \sum_{s \in S_n} 1 - s \text{ satisfies } \underbrace{\Delta_n^2 - \lambda_n \Delta_n \succeq 0}_{\Delta_n = \sum_{e \in \operatorname{E}_n} \Delta_e,} \\ &\Delta_n^2 = \sum_e \Delta_e^2 + \sum_{e \sim f} \Delta_e \Delta_f + \sum_{e \perp f} \Delta_e \Delta_f \\ &=: \quad \mathbf{Sq}_n + \mathbf{Adj}_n + \mathbf{Op}_n \,. \end{split}$$

• Sq, and Op, are positive, but Adj, may not.

For n > m, let's see what we can tell about Δ_n knowing about Δ_m :

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\Delta_m) = m(m-1) \cdot (n-2)! \cdot \Delta_n$$

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\operatorname{Adj}_m) = m(m-1)(m-2) \cdot (n-3)! \cdot \operatorname{Adj}_n$$

$$\sum_{\sigma \in \mathfrak{S}(n)} \sigma(\operatorname{Op}_m) = m(m-1)(m-2)(m-3) \cdot (n-4)! \cdot \operatorname{Op}_n$$
Op_n multiplies faster and overtakes Adj_n.

Trial and error on the comp

$$\heartsuit) \quad \operatorname{\mathsf{Adj}}_5 + \alpha \operatorname{\mathsf{Op}}_5 - \varepsilon \Delta_5 \succeq 0$$

for $\alpha = 2$ and $\varepsilon = 0.13$. It follows that for $n \ge 2\alpha + 3$ $0 \leq 60(n-3)! (\operatorname{Adj}_n + \frac{2\alpha}{n-3} \operatorname{Op}_n - \frac{n-2}{3} \varepsilon \Delta_n) \leq 60(n-3)! (\Delta_n^2 - \frac{n-2}{3} \varepsilon \Delta_n).$

The computer taught us the ad hoc inequality

$$(\heartsuit) \quad \operatorname{\mathsf{Adj}}_5 + \alpha \operatorname{\mathsf{Op}}_5 - \varepsilon \Delta_5 \succeq 0$$

is not only true but even **easy to prove** if $\alpha > 0$ is large. (π , "rng" = "ring" - "i". EL_n(\mathcal{R}) \rightarrow EL_n($\mathcal{R}/\mathcal{R}^2$) \cong ($\mathcal{R}/\mathcal{R}^2$) \oplus ⁿ⁽ⁿ⁻¹⁾ abelian.

Theorem (O. 2022)

For any f.g. **comm.** rng \mathcal{R} generated by $R_0 \in \mathcal{R}$ and for *n* large enough, $\Delta := \sum_{r \in R_0} \sum_{i \neq j} (1 - e_{ij}(r))^* (1 - e_{ij}(r)) \text{ and }$ $\Delta^{(2)} := \sum_{r,s \in R_0} \sum_{i \neq j} (1 - e_{ij}(rs))^* (1 - e_{ij}(rs))$ in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ satisfy $\Delta^2 \ge \lambda \Delta^{(2)}$ in $\mathsf{C}^*[\mathsf{EL}_n(\mathcal{R})]$ for some $\lambda > 0$.

 $\Delta^2 \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ and the proof is silicon-free. Instead it relies on Boca & Zaharescu's work (2005) on the almost Mathieu operators in the rotation C*-algebras \mathcal{A}_{θ} (aka noncomm. tori).

Corollary

 $\exists n \; \exists \varepsilon > 0 \; \text{s.t. Cayley}(\mathsf{SL}_n(\mathbb{Z}/q\mathbb{Z}), \{e_{ij}(p) : i \neq j\}), \; p \perp q, \; \text{are } \varepsilon\text{-expanders.}$

1 The groups $\{\mathsf{EL}_n(p\mathbb{Z}) : p \in \mathbb{N}\}$ are **not** uniformly (T).

The computer taught us the ad hoc inequality

$$\heartsuit) \quad \mathsf{Adj}_5 + \alpha \operatorname{Op}_5 - \varepsilon \Delta_5 \succeq 0$$

is not only true but even easy to prove if $\alpha > 0$ is large.

 $\mathbf{\Lambda} \quad \text{"rng"} = \text{"ring"} - \text{"i"} \quad \mathsf{EL}_n(\mathcal{R}) \twoheadrightarrow \mathsf{EL}_n(\mathcal{R}/\mathcal{R}^2) \cong (\mathcal{R}/\mathcal{R}^2)^{\oplus n(n-1)} \text{ abelian}.$

Theorem (O. 2022)

For any f.g. comm. rng \mathcal{R} generated by $R_0 \Subset \mathcal{R}$ and for *n* large enough,

$$\Delta := \sum_{r \in R_0} \sum_{i \neq j} (1 - e_{ij}(r))^* (1 - e_{ij}(r))$$
 and
 $\Delta^{(2)} := \sum_{r,s \in R_0} \sum_{i \neq j} (1 - e_{ij}(rs))^* (1 - e_{ij}(rs))$

in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ satisfy $\Delta^2 \ge \lambda \Delta^{(2)}$ in $\mathsf{C}^*[\mathsf{EL}_n(\mathcal{R})]$ for some $\lambda > 0$.

 $\Delta^2 \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ and the proof is silicon-free. Instead it relies on Boca & Zaharescu's work (2005) on the almost Mathieu operators in the rotation C^{*}-algebras \mathcal{A}_{θ} (aka noncomm. tori).

Corollary

 $\exists n \; \exists \varepsilon > 0 \; \text{s.t. Cayley}(\mathsf{SL}_n(\mathbb{Z}/q\mathbb{Z}), \{e_{ij}(p) : i \neq j\}), \; p \perp q, \; \text{are} \; \varepsilon\text{-expanders.}$

 \blacksquare The groups $\{\mathsf{EL}_n(p\mathbb{Z}) : p \in \mathbb{N}\}$ are **not** uniformly (T).

The computer taught us the ad hoc inequality

$$\heartsuit) \quad \operatorname{\mathsf{Adj}}_5 + \alpha \operatorname{\mathsf{Op}}_5 - \varepsilon \Delta_5 \succeq 0$$

is not only true but even easy to prove if $\alpha > 0$ is large.

$$! \quad "rng" = "ring" - "i" \cdot \mathsf{EL}_n(\mathcal{R}) \twoheadrightarrow \mathsf{EL}_n(\mathcal{R}/\mathcal{R}^2) \cong (\mathcal{R}/\mathcal{R}^2)^{\oplus n(n-1)} \text{ abelian}.$$

Theorem (O. 2022)

For any f.g. comm. rng \mathcal{R} generated by $R_0 \Subset \mathcal{R}$ and for *n* large enough,

$$\Delta := \sum_{r \in R_0} \sum_{i \neq j} (1 - e_{ij}(r))^* (1 - e_{ij}(r))$$
 and
 $\Delta^{(2)} := \sum_{r,s \in R_0} \sum_{i \neq j} (1 - e_{ij}(rs))^* (1 - e_{ij}(rs))$

in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ satisfy $\Delta^2 \geq \lambda \Delta^{(2)}$ in $C^*[\mathsf{EL}_n(\mathcal{R})]$ for some $\lambda > 0$.

 $\Delta^2 \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ and the proof is silicon-free. Instead it relies on Boca & Zaharescu's work (2005) on the almost Mathieu operators in the rotation C^{*}-algebras \mathcal{A}_{θ} (aka noncomm. tori).

Corollary

 $\exists n \; \exists \varepsilon > 0 \; \text{s.t. Cayley}(\mathsf{SL}_n(\mathbb{Z}/q\mathbb{Z}), \{e_{ij}(p) : i \neq j\}), \; p \perp q, \; \text{are} \; \varepsilon\text{-expanders.}$

 \blacksquare The groups $\{\mathsf{EL}_n(p\mathbb{Z}) : p \in \mathbb{N}\}$ are **not** uniformly (T).

The computer taught us the ad hoc inequality

$$\heartsuit) \quad \operatorname{\mathsf{Adj}}_5 + \alpha \operatorname{\mathsf{Op}}_5 - \varepsilon \Delta_5 \succeq 0$$

is not only true but even **easy to prove** if $\alpha > 0$ is large.

$$! \quad "rng" = "ring" - "i" \cdot \mathsf{EL}_n(\mathcal{R}) \twoheadrightarrow \mathsf{EL}_n(\mathcal{R}/\mathcal{R}^2) \cong (\mathcal{R}/\mathcal{R}^2)^{\oplus n(n-1)} \text{ abelian}.$$

Theorem (O. 2022)

For any f.g. comm. rng \mathcal{R} generated by $R_0 \Subset \mathcal{R}$ and for *n* large enough,

$$\Delta := \sum_{r \in R_0} \sum_{i \neq j} (1 - e_{ij}(r))^* (1 - e_{ij}(r))$$
 and
 $\Delta^{(2)} := \sum_{r.s \in R_0} \sum_{i \neq i} (1 - e_{ij}(rs))^* (1 - e_{ij}(rs))$

in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ satisfy $\Delta^2 \geq \lambda \Delta^{(2)}$ in $C^*[\mathsf{EL}_n(\mathcal{R})]$ for some $\lambda > 0$.

 $\Delta^2 \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ and the proof is silicon-free. Instead it relies on Boca & Zaharescu's work (2005) on the almost Mathieu operators in the rotation C^{*}-algebras \mathcal{A}_{θ} (aka noncomm. tori).

Corollary

 $\exists n \exists \varepsilon > 0 \text{ s.t. Cayley}(SL_n(\mathbb{Z}/q\mathbb{Z}), \{e_{ij}(p) : i \neq j\}), p \perp q, \text{ are } \varepsilon\text{-expanders.}$

1 The groups $\{\mathsf{EL}_n(p\mathbb{Z}) : p \in \mathbb{N}\}$ are **not** uniformly (T).

The computer taught us the ad hoc inequality

$$\heartsuit) \quad \operatorname{\mathsf{Adj}}_5 + \alpha \operatorname{\mathsf{Op}}_5 - \varepsilon \Delta_5 \succeq 0$$

is not only true but even easy to prove if $\alpha > 0$ is large.

$$! \quad "rng" = "ring" - "i" \cdot \mathsf{EL}_n(\mathcal{R}) \twoheadrightarrow \mathsf{EL}_n(\mathcal{R}/\mathcal{R}^2) \cong (\mathcal{R}/\mathcal{R}^2)^{\oplus n(n-1)} \text{ abelian}.$$

Theorem (0. 2022)

For any f.g. comm. rng \mathcal{R} generated by $R_0 \Subset \mathcal{R}$ and for *n* large enough,

$$\Delta := \sum_{r \in R_0} \sum_{i \neq j} (1 - e_{ij}(r))^* (1 - e_{ij}(r))$$
 and
 $\Delta^{(2)} := \sum_{r.s \in R_0} \sum_{i \neq i} (1 - e_{ij}(rs))^* (1 - e_{ij}(rs))$

in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ satisfy $\Delta^2 \geq \lambda \Delta^{(2)}$ in $C^*[\mathsf{EL}_n(\mathcal{R})]$ for some $\lambda > 0$.

 $\Delta^2 \succeq \lambda \Delta^{(2)}$ does not hold in $\mathbb{R}[\mathsf{EL}_n(\mathcal{R})]$ and the proof is silicon-free. Instead it relies on Boca & Zaharescu's work (2005) on the almost Mathieu operators in the rotation C^{*}-algebras \mathcal{A}_{θ} (aka noncomm. tori).

Corollary

 $\exists n \ \exists \varepsilon > 0 \ \text{s.t. Cayley}(\mathsf{SL}_n(\mathbb{Z}/q\mathbb{Z}), \{e_{ij}(p) : i \neq j\}), \ p \perp q, \ \text{are } \varepsilon\text{-expanders.}$

! The groups $\{\mathsf{EL}_n(p\mathbb{Z}) : p \in \mathbb{N}\}$ are **not** uniformly (T).