BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//prima-2022//speaker calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZOME
TZID:America/Vancouver
TZURL:http://tzurl.org/zoneinfo-outlook/America/Vancouver
X-LIC-LOCATION:America/Vancouver
BEGIN:DAYLIGHT
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
TZNAME:PDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
TZNAME:PST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP;TZID=America/Vancouver:20221206T173000
DTSTART;TZID=America/Vancouver:20221206T173000
DTEND;TZID=America/Vancouver:20221206T175000
UID:20221206T173000@prima2022.primamath.org
SUMMARY:On the computation of Kronecker coefficients
DESCRIPTION:A Kronecker coefficient $g(\lambda, \mu, \nu)$ is a non-negative integer that depends on three partitions $\lambda$, $\mu$, $\nu$ of a natural number $n$. It is the multiplicity of an irreducible representation $V^\nu$ of the symmetric group of degree n in the tensor (or Kronecker) product $V^\lambda \otimes V^\mu$ of two other irreducible representations of the same group.
The study of ways of computing Kronecker coefficients is an important topic on algebraic combinatorics. Several tools have been used to try to understand them, notably from representation theory, symmetric functions theory and Borel-Weil theory. These numbers generalize the well-known Littlewood-Richardson coefficients but are still very far to be fully grasped.
It is known that each Kronecker coefficient can be described as an alternating sum of numbers of integer points in convex polytopes. In this talk we present a new family of polytopes that permit efficient computations on Kronecker coefficients associated to partitions with few parts and provides insight in the behavior of Murnaghan stability.
STATUS:CONFIRMED
LOCATION:Junior Ballroom D
END:VEVENT
END:VCALENDAR