BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//prima-2022//speaker calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZOME
TZID:America/Vancouver
TZURL:http://tzurl.org/zoneinfo-outlook/America/Vancouver
X-LIC-LOCATION:America/Vancouver
BEGIN:DAYLIGHT
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
TZNAME:PDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
TZNAME:PST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP;TZID=America/Vancouver:20221209T152000
DTSTART;TZID=America/Vancouver:20221209T152000
DTEND;TZID=America/Vancouver:20221209T160000
UID:20221209T152000@prima2022.primamath.org
SUMMARY:Quantisation on hyper-Kähler spaces
DESCRIPTION:Geometric quantisation has proven an effective approach to many problems in mathematical physics. Many examples have been shown of theories whose classical solutions form geometric spaces with rich and interesting structures, which may then be used for quantisation. Sometimes, however, there is just too much structure, and it can become difficult to pick on to use. This is the case, for example, for hyper-Kähler manifolds, which come with infinite families of symplectic forms.
In a recent work with J.E. Andersen and G. Rembado, we proposed a new paradigm for quantisation of hyper-Kähler spaces assuming sufficient symmetry, which opens the way to exploration in many different directions. There are many examples of spaces to which this quantisation can be applied, including several from mathematical physics, and there are many famous results in "ordinary" quantisation that should be tested for this new version, notably the famous statement that quantisation commutes with reduction. In this talk I will give a panoramic of known results and possible research directions, including ongoing work with M. Mayrand.
STATUS:CONFIRMED
LOCATION:Orca
END:VEVENT
END:VCALENDAR