BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//prima-2022//speaker calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZOME
TZID:America/Vancouver
TZURL:http://tzurl.org/zoneinfo-outlook/America/Vancouver
X-LIC-LOCATION:America/Vancouver
BEGIN:DAYLIGHT
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
TZNAME:PDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
TZNAME:PST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP;TZID=America/Vancouver:20221205T163000
DTSTART;TZID=America/Vancouver:20221205T163000
DTEND;TZID=America/Vancouver:20221205T172000
UID:20221205T163000@prima2022.primamath.org
SUMMARY:When are stable minimal surfaces holomorphic?
DESCRIPTION:The question of whether stable minimal surfaces are holomorphic under suitable geometric conditions has been much studied, beginning with work of Lawson-Simons in complex projective space, and the proof of the Frankel conjecture by Siu-Yau. A theorem of Micallef shows that a stable minimal immersion of a complete oriented parabolic surface into Euclidean 4-space is holomorphic with respect to an orthogonal complex structure, and the same result in all dimensions if additionally the minimal surface has finite total curvature and genus zero. However, Arezzo, Micallef and Pirola gave a counterexample in general. It is therefore necessary to strengthen the stability condition in the general question. We will discuss some recent progress on this question. This is joint work with R. Schoen.
STATUS:CONFIRMED
LOCATION:Junior Ballroom A/B
END:VEVENT
END:VCALENDAR